то х5 станет <0, что недопустимо.
то х1 станет <0, что недопустимо.
из базиса выводится х1.
Новый базис имеет вид:
х3 = 1,5; x5 = 0,5; x1=x2=x4=0; f(x) = -8
Значение целевой функции уменьшилось с 28 до –8.
Новая система имеет вид:
где х3 и х5 – базисные переменные.
Начало, S=0.
Ввод n, b, ci, ai, i=1,2,…n
Все наряд-заказы ранжируются таким образом, что:
j=1
Печать S и
Конец алгоритма
1
2
3
4
6
7
8
9
Требуется определить вектор переменных Х, который бы максимизировал финансовые поступления на предприятие:
где: хi – объем выпускаемой продукции i-го вида (непрерывная неотрицательная переменная); сi – стоимость единицы выпускаемой продукции i-го вида; b – величина имеющегося ресурса (например, человекочасы); аi, – затраты единственного вида ресурса, приходящиеся на единицу i-го вида продукции, di - верхняя граница выпуска i-го вида продукции.
j=1
b=0
Нет
Конец алгоритма
Да
1
2
3
4
5
6
7
8
9
-x1+x2=1
x1+x2=2
x1-2x2=1
Область допустимых решений ограничена.
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть