Age Classification from Hand Vein Patterns презентация

Problem Automatic Age Estimation from Biological Features of Humans. Application Areas: HCI Systems Security Applications Forensics etc.

Слайд 1Age Classification from Hand Vein Patterns
Yusuf Yilmaz 2009700303
  SenihaKöksal 2008700195


Слайд 2Problem
Automatic Age Estimation from Biological Features of Humans.
Application Areas:
HCI Systems
Security Applications
Forensics
etc.


Слайд 3Our Goal
Age Estimation from Hand Vein Patterns
Data To Be Used:
Hand Vein

Image Data of 30 Persons mixed gender.
Age classes are as follows.
(15-20) 5 People, (20-25) 5 People, (25-30) 5 People,(30-35) 5 People, (35-45) 5 People, (45+) 5 People.


Слайд 4Methods
TEAK
effort estimator TEAK (short for “Test Essential Assumption Knowledge”) that has

been proposed by Ekrem Kocaguneli and Ayse Bener [1].
k-nearest neighbor
PCA

Слайд 5TEAK(The Essential Assumption Knowledge)
It applied the easy path in five steps:
1)

Select a prediction system: As prediction system ABE is used.
2) Identify the predictor’s essential assumption(s):




Слайд 6TEAK(The Essential Assumption Knowledge)
3) Recognize when those assumption(s) are violated: Greedy

Agglomerative Clustering (GAC) and the distance measure of equation (Euclidean) is used to identify Assumption Violation.


Слайд 7TEAK(The Essential Assumption Knowledge)
GAC executes bottom-up by grouping test data, which

are closest, together at a higher level.

Слайд 8TEAK(The Essential Assumption Knowledge)


Слайд 9TEAK(The Essential Assumption Knowledge)
4) Remove those situations: When the violation situation

find, tree is pruned to remove those violations. There are three types of prune policy:

5) Execute the modified prediction system.


Слайд 10TEAK Algorithm
normalizeValues(images);
TestImage=selectTestImage(images);
//Put all test images to the leaves of tree
//Generate

GAC from bottom to up
GAC1=GenerateGACTree(TrainingImages);
//Traverse tree and prune if needed
prototaypeImages=Travers1Prune(GAC1, TestImage);
//Generate Second GAC tree
GAC2=GenerateGACTree(prototaypeImages);
//Compute, estimate, the median
estimatedAge=Traverse(GAC2, TestImage);


Слайд 11Features
Mean of colors
Number of points that is smaller than mean

of colors of a picture


Слайд 12RESULTS
Result has been evaluated by using AE(absolute Error ) and MAE

(Mean AE)


Слайд 13RESULTS (teak+kNN)
mean color


Слайд 14RESULTS (teak+kNN)
mean color


Слайд 15RESULTS (teak+kNN)
age estimation
age group estimation


Слайд 16RESULTS (PCA)
+own age
-own age


Слайд 17RESULTS (PCA)
+own age
-own age


Слайд 18RESULTS SUMMARY


Слайд 19Methods
Correlation-Based k-NN (image)
Correlation of Derivative-Based k-NNs (image)
Linear Weighted Derivative-Based k-NN (image)
Simple

k-NN (1 feature)

Слайд 20Simple k-NN feature
Take 3x3 window which finds min and max values

in the image.
Threshold (max-min)

Data Set Used: Hand Palm

Слайд 21Results


Слайд 22Feature with T=18 and k=2.


Слайд 23Result of AGES Algorithm(face)


Слайд 24Results of AAM with SVR(face)


Слайд 25Results of Dimensionality Reduction(face)


Слайд 26References
[1] E. Kocaguneli and A. Bener, JOURNAL OF IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z, 2010.



Слайд 27


Thank You.
Questions


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика