Age Classification from Hand Vein Patterns презентация

Слайд 1Age Classification from Hand Vein Patterns
Yusuf Yilmaz 2009700303
  SenihaKöksal 2008700195


Слайд 2Problem
Automatic Age Estimation from Biological Features of Humans.
Application Areas:
HCI Systems
Security Applications
Forensics
etc.


Слайд 3Our Goal
Age Estimation from Hand Vein Patterns
Data To Be Used:
Hand Vein

Image Data of 30 Persons mixed gender.
Age classes are as follows.
(15-20) 5 People, (20-25) 5 People, (25-30) 5 People,(30-35) 5 People, (35-45) 5 People, (45+) 5 People.


Слайд 4Methods
TEAK
effort estimator TEAK (short for “Test Essential Assumption Knowledge”) that has

been proposed by Ekrem Kocaguneli and Ayse Bener [1].
k-nearest neighbor
PCA

Слайд 5TEAK(The Essential Assumption Knowledge)
It applied the easy path in five steps:
1)

Select a prediction system: As prediction system ABE is used.
2) Identify the predictor’s essential assumption(s):




Слайд 6TEAK(The Essential Assumption Knowledge)
3) Recognize when those assumption(s) are violated: Greedy

Agglomerative Clustering (GAC) and the distance measure of equation (Euclidean) is used to identify Assumption Violation.


Слайд 7TEAK(The Essential Assumption Knowledge)
GAC executes bottom-up by grouping test data, which

are closest, together at a higher level.

Слайд 8TEAK(The Essential Assumption Knowledge)


Слайд 9TEAK(The Essential Assumption Knowledge)
4) Remove those situations: When the violation situation

find, tree is pruned to remove those violations. There are three types of prune policy:

5) Execute the modified prediction system.


Слайд 10TEAK Algorithm
normalizeValues(images);
TestImage=selectTestImage(images);
//Put all test images to the leaves of tree
//Generate

GAC from bottom to up
GAC1=GenerateGACTree(TrainingImages);
//Traverse tree and prune if needed
prototaypeImages=Travers1Prune(GAC1, TestImage);
//Generate Second GAC tree
GAC2=GenerateGACTree(prototaypeImages);
//Compute, estimate, the median
estimatedAge=Traverse(GAC2, TestImage);


Слайд 11Features
Mean of colors
Number of points that is smaller than mean

of colors of a picture


Слайд 12RESULTS
Result has been evaluated by using AE(absolute Error ) and MAE

(Mean AE)


Слайд 13RESULTS (teak+kNN)
mean color


Слайд 14RESULTS (teak+kNN)
mean color


Слайд 15RESULTS (teak+kNN)
age estimation
age group estimation


Слайд 16RESULTS (PCA)
+own age
-own age


Слайд 17RESULTS (PCA)
+own age
-own age


Слайд 18RESULTS SUMMARY


Слайд 19Methods
Correlation-Based k-NN (image)
Correlation of Derivative-Based k-NNs (image)
Linear Weighted Derivative-Based k-NN (image)
Simple

k-NN (1 feature)

Слайд 20Simple k-NN feature
Take 3x3 window which finds min and max values

in the image.
Threshold (max-min)

Data Set Used: Hand Palm

Слайд 21Results


Слайд 22Feature with T=18 and k=2.


Слайд 23Result of AGES Algorithm(face)


Слайд 24Results of AAM with SVR(face)


Слайд 25Results of Dimensionality Reduction(face)


Слайд 26References
[1] E. Kocaguneli and A. Bener, JOURNAL OF IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z, 2010.



Слайд 27


Thank You.
Questions


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика