Убывающая
Функцию у = f(х) называют убывающей на множестве Х, если для любых двух точек
х1 и х2 множества Х, таких, что х1 < х2, выполняется неравенство
f(х1) >f(х2).
x1
x2
f(x1)
f(x2)
х1
x2
f(x2)
f(x1)
СВОЙСТВА ФУНКЦИИ
СВОЙСТВА ФУНКЦИИ
СВОЙСТВА ФУНКЦИИ
1
2
подумай
правильно
Четная функция
Нечетная функция
Функция y = f(x) называется четной, если область ее определения есть множество, симметричное относительно начала координат, и если f (-x) = f (x) при любом х ∈ Х. Четная функция симметрична относительно оси ординат.
Функция y = f(x) называется четной, если область ее определения есть множество, симметричное относительно начала координат, и если f (-x) = f (x) при любом х ∈ Х. Нечетная функция симметрична относительно начала координат.
СВОЙСТВА ФУНКЦИИ
Функцию у = f(х) называют ограниченной сверху на множестве Х, если все значения функции на множестве Х меньше некоторого числа.
х
у
х
у
СВОЙСТВА ФУНКЦИИ
СВОЙСТВА ФУНКЦИИ
СВОЙСТВА ФУНКЦИИ
k > 0
k < 0
при k > 0
D(f) = (-∞, +∞);
E(f) = [0, +∞);
четная;
убывает на луче (-∞, 0],
возрастает на луче [0, +∞);
непрерывна;
ограничена снизу, не ограничена сверху;
унаиб не существует, унаим = 0;
y = 0 при х = 0
выпукла вниз.
СВОЙСТВА ФУНКЦИИ у = kх2
СВОЙСТВА ФУНКЦИИ
СВОЙСТВА ФУНКЦИИ
СВОЙСТВА ФУНКЦИИ
при k < 0
D(f) = (-∞,0)U(0, +∞);
Е(f) = (-∞,0)U(0,+∞);
четная
возрастает на луче (-∞,0) и на
луче (0,+∞);
нет ни наименьшего, ни
наибольшего значений;
непрерывна на луче (-∞,0) и
на луче (0,+∞);
выпукла вверх при х > 0 и
выпукла вниз при х < 0;
ограничена ни сверху при х >0,
ограничена снизу при х < 0;
с осями координат не пересекается.
СВОЙСТВА ФУНКЦИИ
y
x
СВОЙСТВА ФУНКЦИИ
при а > 0
D(f) = (-∞, +∞);
Е(f) = [у0 ; +∞)
убывает на луче ,
возрастает на луче ;
ограничена снизу;
унаим = у0, унаиб не существует;
непрерывна;
выпукла вниз;
СВОЙСТВА ФУНКЦИИ
при а < 0
D(f) = (-∞, +∞);
Е(f) = (-∞; у0 ]
убывает на луче ,
возрастает на луче ;
ограничена сверху;
унаим не существует, унаиб = у0;
непрерывна;
выпукла вверх.
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть