Solution methods for bilevel optimization презентация

Overview Definition and general form of a bilevel problem Discuss optimality (KKT-type) conditions Reformulate general bilevel problem as a system of equations Consider iterative (descent direction) methods applicable to solve this

Слайд 1Solution Methods for Bilevel Optimization
Andrey Tin
A.Tin@soton.ac.uk
School of Mathematics

Supervisors: Dr Alain B.

Zemkoho, Professor Jörg Fliege



Слайд 2Overview
Definition and general form of a bilevel problem
Discuss optimality (KKT-type) conditions
Reformulate

general bilevel problem as a system of equations
Consider iterative (descent direction) methods applicable to solve this reformulation
Look at the numerical results of using Levenberg-Marquardt method

Слайд 3Stackelberg Game (Bilevel problem)


Players: the Leader and the Follower
The Leader is

first to make a decision
Follower reacts optimally to Leader’s decision
The payoff for the Leader depends on the follower’s reaction

Слайд 4Example
Taxation of a factory
Leader – government
Objectives: maximize profit and minimize pollution
Follower

– factory owner
Objectives: maximize profit

Слайд 5

General structure of a Bilevel problem
 


Слайд 6Important Sets
 


Слайд 7Solution methods


Vertex enumeration in the context of Simplex method
Kuhn-Tucker approach
Penalty approach
Extract

gradient information from a lower objective function to compute directional derivatives of an upper objective function








Слайд 8Concept of KKT conditions
 


Слайд 9Value function reformulation
 


Слайд 10KKT for value function reformulation
 


Слайд 11Assumptions



Слайд 12KKT-type optimality conditions for Bilevel


Слайд 13Further Assumptions (for simpler version)



Слайд 14Simpler version


 


Слайд 15NCP-Functions


Define
Give a reason (non-differentiability of constraints)
Fischer-Burmeister


Слайд 16Simpler version in the form of the system of equations



Слайд 17Iterative methods
 


Слайд 18For Bilevel case
 


Слайд 19Newton method


Define
Explain that we are dealing with non-square system
Suggest pseudo inverse

Newton

Слайд 20

Pseudo inverse


Слайд 21

Newton method with pseudo inverse


Слайд 22

Gauss-Newton method
Define
Mention the wrong formulation
Refer to pseudo-inverse Newton


Слайд 23

Gauss-Newton method
 


Слайд 24Convergence of Newton and Gauss-Newton


Talk about starting point condition
Interest for future

analysis


Слайд 25Levenberg-Marquardt method



Слайд 26Numerical results



Слайд 27Plans for further work


 


Слайд 28Plans for further work


6. Construct the own code for Levenberg-Marquardt method

in the context of solving bilevel problems within defined reformulation.
7. Search for good starting point techniques for our problem. 8. Do the numerical calculations for the harder reformulation defined .
9. Code Newton method with pseudo-inverse.
10. Solve the problem assuming strict complementarity
11. Look at other solution methods.

Слайд 31References


 


Слайд 32References


 


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика