Презентация на тему Решение задач, возникающих в реальной жизни, с использованием теоретико-множественного подхода

Презентация на тему Решение задач, возникающих в реальной жизни, с использованием теоретико-множественного подхода, предмет презентации: Математика. Этот материал содержит 7 слайдов. Красочные слайды и илюстрации помогут Вам заинтересовать свою аудиторию. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций ThePresentation.ru в закладки!

Слайды и текст этой презентации

Слайд 1
Текст слайда:

Попов Максим Александрович

Старший преподаватель кафедры высшей математики РГУ нефти и газа имени И. М. Губкина

Семинар №1

Решение задач, возникающих в реальной жизни, с использованием теоретико-множественного подхода


Слайд 2
Текст слайда:

Примеры операций над множествами

 


Слайд 3
Текст слайда:

Задание из ЕГЭ (Германия)

Формулировка задачи:
В классе 20 учеников, из которых 12 изучают биологию, 15 - историю и 2 не изучают ни биологию, ни историю. Сколько учеников изучает и биологию и историю?
Ответ: 9


Слайд 4
Текст слайда:

Основные тождества теории множеств


Коммутативность объединения и пересечения А ∪ В = В ∪ А; А ∩ В = В ∩ А
Дистрибутивность объединения и пересечения (А ∪ В) ∪ С = А ∪ (В ∪ С); ( А ∩ В) ∩ С = А ∩ (В ∩ С)
Взаимная дистрибутивность объединения и пересечения (А ∪ В) ∩ С = (А ∩ В) ∪ (В ∩ С); (А ∩ В) ∪ С = (А ∪ В) ∩ (В ∪ С)
Формальное доказательство взаимной дистрибутивности (1-го тождества)
Пусть x ∈ (А ∪ В) ∩ С Тогда x ∈ А ∪ В и x ∈ С
Значит, x принадлежит хотя бы одному из множеств А; В и принадлежит С
Тогда x принадлежит хотя бы одному из множеств А ∩ С; В ∩ С
Значит, x принадлежит правой части тождества
Доказали ли мы формулу?
НЕТ!
В обратную сторону устно.
Геометрическое доказательство:
Принцип двойственности S \ (А1 ∪ A2) = (S \ A1) ∩ (S \ A2) S \ (А1 ∩ A2) = (S \ A1) ∪ (S \ A2)


Слайд 5
Текст слайда:

Отображения множеств


Отображение ƒ: А → В - это правило, которое каждому элементу множества А ставит в соответствие один и только один элемент множества В
Если ƒ(А) = В , то ƒ называется сюръекцией
Если для x1 , x2 ∈ А, таких что x1 ≠ x2 ƒ(x1 ) ≠ ƒ(x2 ) , то ƒ называется инъекцией
Если ƒ инъекция и сюръекция, то такое отображение называется биекцией
Множества называются равномощными, если между ними существует биекция
Теорема: Для всякого множества А множество P(А) его подмножеств не равномощно самому множеству А
Доказательство: Предложим, ∃ биекция ƒ : А →P(А)
a ∈ А назовём «хорошим», если a ∈ ƒ(а) и «плохим», если a ∉ ƒ(а)
Пусть П ⊂ А - множество всех плохих элементов. Так как ƒ- биекция, то ∃ х ∈ А, такой что ƒ(х) = П. х – хороший или плохой?
Если х - хороший, то х ∈ ƒ(х) = П - противоречие
Если х - плохой, то х ∉ ƒ(х) = П ⇒ х - хороший, противоречие Теорема доказана.


Слайд 6
Текст слайда:

Счётность ℚ и несчётность ℝ


Множество А называется счётным, если ∃ биекция ƒ: А →ℕ


Слайд 7
Текст слайда:

СПАСИБО ЗА ВНИМАНИЕ!

Хотелось бы сказать огромное СПАСИБО следующим людям за следующие книжки:
1) Ященко Ивану Валерьевичу, «Парадоксы теории множеств»
2) Болибруху Андрею Андреевичу (светлая память!), «Проблемы Гильберта (100 лет спустя)»


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика