Муниципальный этап олимпиады школьников по математике 2013 года для 5-8 классов презентация

Разрезание и замощение 5 класс Разрезать фигуру из белых клеток на четыре равных фигуры, состоящие из белых клеток. 6 класс На рисунке изображены два прямоугольника 9×12, раскрашенные разными способами в три

Слайд 1Муниципальный этап олимпиады школьников по математике 2013 года для 5-8 классов


Слайд 2Разрезание и замощение
5 класс
Разрезать фигуру из белых клеток на четыре равных

фигуры, состоящие из белых клеток.

6 класс
На рисунке изображены два прямоугольника 9×12, раскрашенные разными способами в три цвета. Разрежьте прямоугольник слева на 4 части так, чтобы из них можно было сложить прямоугольник нарисованный справа.

Решения


Слайд 37 класс

Сколькими способами можно разрезать фигуру из белых клеток (см. рис.)

на домино размером 2×1?

8 класс

Из доски 8×8 вырезан в углу квадрат 6×6. Двое по очереди ставят на получившуюся доску непересекающиеся уголки из трех клеток (по линиям сетки). Кто не может поставить уголок, тот проиграл. Кто выиграет при правильной игре?

Решения


Слайд 45 класс

Можно ли на доске 7×7 расставить 25 рыцарей и 24

лжеца (по одному в каждой клетке) так, чтобы каждый из них мог сказать: «Рядом со мной стоит ровно один рыцарь»? Люди стоят рядом, если у клеток, в которых они стоят, есть общая сторона. Рыцари всегда говорят правду, а лжецы всегда лгут. Ответ обоснуйте.

7 класс

На шахматной доске 8×8 стоят 10 шахматных фигур (слоны и ладьи), не бьющих друг друга. Какое наименьшее количество слонов может быть среди них? Ладьи бьют только по вертикалям и горизонталям, а слоны только по диагоналям.

Решения


Слайд 5Числовые ребусы




Слайд 67 класс
В числовом ребусе СТО+СТО=ПЯТЬ одинаковыми буквами заменены одинаковые цифры, а

разными – разные. Найдите самое большое значение числа «ПЯТЬ».

Решение

«ПЯТЬ» наибольшее число, значит «СТО» тоже наибольшее, тогда С=9 и П=1.
9+9=18, значит Я либо 8, либо 9, но С=9, тогда Я=8.
Т+Т=Т или Т+Т+1=Т. Отсюда Т=0.
О+О=Ь. Рассмотрим
О=4, следовательно Ь=8, но 8=Я.
О=3, тогда Ь=6.

Ответ

ПЯТЬ=1806=903+903.

8 класс
Имеет ли решение ребус СТАРТ+2013=ФИНИШ? Одинаковые буквы соответствуют одинаковым цифрам, разные буквы – разным цифрам. Ответ обосновать.

Решение

Ф=С+1.
Т+2+(0 или 1)>9, значит Т+3>9. Имеем
Р+1+1=10+И, так как А≠Н,
Т+2+(0 или 1)=10+И.
А+0+1=10+Н, значит А=9 и Н=0.
Р+2>9, значит Р либо 8, либо 9, но А=9, тогда Р=8 и И=0, но Н=0. Пришли к противоречию.

Ответ

Решения не имеет.


Т+2+1=10+И.


Слайд 7Делимость
5 класс
На точно идущих двенадцатичасовых часах часовая стрелка в данный момент

показывает на отметку «44 минуты». Что показывает минутная стрелка?

Решение
44×12=528=8×60+48.

6 класс
Придумайте 25-значное число без нулевых цифр, делящееся на сумму своих цифр. Обоснуйте, что оно удовлетворяет всем условиям задачи.

Решение
Пусть сумма цифр 36, значит число делится на 9.
Возьмем последние две цифры так, чтобы число делилось на 4, например 44.
Остальные 23 цифры составим из восемнадцати 1 и пяти 2 чтобы в сумме все цифры включая последние давали 36.

7 класс
На столе лежит куча из 1001 камня. Из нее выкидывают камень и кучу делят на две. Затем из какой-либо кучи, содержащей более одного камня, снова выкидывают камень, и снова одну кучу делят на две. И так далее. Можно ли через несколько ходов оставить на столе только кучи, состоящие из трех камней?

Решение
Пусть за k ходов мы разбили кучу на (k+1) кучку по 3 камня. Тогда отброшено k камней и всего камней k+3(k+1)=4k+3=1001. Но 998≠4k. Противоречие.

8 класс
Докажите, что для любого натурального числа n можно выбрать такое натуральное число а, чтобы число а(n +1) – (n2 + n + 1) нацело делилось на n3.
Решение
a=n2+1. Тогда (n2+1)(n +1) – (n2 + n + 1) = n3.


Слайд 8Рыцари, лжецы и хитрецы
7 класс
На острове живут рыцари, которые всегда говорят

правду, лжецы, которые всегда лгут, и хитрецы, которые могут говорить что угодно. Из трёх жителей острова А, В и С один является правдолюбцем, другой — лжецом, а третий — хитрецом. Они произнесли следующие утверждения — А: «С хитрец»; В: «Это правда»; С: «В не рыцарь». Кем в действительности является С?

Решение

Рыцарь

Хитрец

Лжец

А

В

С

А

С

В

А

А

С

В

В

С

«С хитрец»

«Это правда»

«В не рыцарь»

«С хитрец»

«В не рыцарь»

«Это правда»

«Это правда»

«Это правда»

«С хитрец»

«С хитрец»

«В не рыцарь»

«В не рыцарь»


Слайд 98 класс
На острове живут рыцари, которые всегда говорят правду, лжецы, которые

всегда лгут, и хитрецы, которые могут говорить что угодно. Из трёх жителей острова: К, М и Р один является правдолюбцем, другой — лжецом, а третий — хитрецом. Они произнесли следующие утверждения — К: «Р не хитрец». М: «Это ложь». Р: «К рыцарь». Кем в действительности являются К, М и Р?

Решение

Рыцарь

Хитрец

Лжец

К

Р

М

К

М

Р

К

К

М

Р

Р

М

«Р не хитрец»

«К рыцарь»

«Это ложь»

«Р не хитрец»

«Это ложь»

«К рыцарь»

«К рыцарь»

«К рыцарь»

«Р не хитрец»

«Р не хитрец»

«Это ложь»

«Это ложь»


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика