Криволинейные интегралы по координата общего вида определяются равенством
x=x(t), y=y(t), где t1≤t≤t2, то
Пример. Вычислить криволинейный интеграл
от точки А(1; 0) до точки В(0; 2).
по дуге эллипса
Сделать чертеж.
Формула Остроградского – Грина устанавливает связь между криволинейным интегралом и двойным интегралом, т.е. дает выражение интеграла по замкнутому контуру через двойной интеграл по области, ограниченной этим контуром.
Будем считать, что рассматриваемая область односвязная, т.е. в ней нет исключенных участков.
Если участки АВ и CD контура принять за произвольные кривые, то, проведя соответствующие преобразования, получим формулу для контура произвольной формы:
Область, ограниченная
контуром
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть