Аксиома №1
Аксиома №2
Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).
Из аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.
Пример: пересечение двух смежных стен, стены и потолка комнаты.
Аксиома №1
(Следствие)
Теорема 2.
Через две пересекающиеся прямые a и b проходит плоскость, и при том только одна.
α
β
Теорема о параллельных прямых.
Лемма о пересечении плоскости параллельными прямыми.
Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Признак параллельности прямой и плоскости
Теорема №1
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Теорема №3
Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.
Если α∥β и AB∥CD, то АВ = CD.
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
Впервые прямоугольную систему координат ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Поэтому прямоугольную систему координат называют также —Декартова система координат.
Координатой x точки A называется число, равное абсолютной величине длине отрезка OAx: положительное, если точка Ax лежит на положительной полуоси x, отрицательное, если на отрицательной полуоси.
Координаты точки A в пространстве записываются так: A(x;y;z)
Параллельный перенос есть движение. При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.
Геометрически векторы изображаются направленными отрезками.
Направленный отрезок называется вектором.
Если начало вектора — точка А, а его конец — точка В, то вектор обозначается или .
От любой точки можно отложить вектор, равный данному, и притом только один, используя параллельный перенос.
Нулевой вектор — точка в пространстве. Начало и конец нулевого вектора совпадают, и он не имеет длины и направления.
Обозначается: .
Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.
Если векторы и коллинеарны и их лучи сонаправлены, товекторы и называются сонаправленными.
коллинеарные векторы:
е
где х и у — некоторые числа, то векторы , и компланарны.
Числа x и y называются координатами вектора. Векторы и называются базисом вектора на плоскости.
Теорема: Любой вектор на плоскости может быть представлен, и притом единственным образом, в виде линейной комбинации трех любых неколлинеарных векторов , и : :
Числа x, y и z называются координатами вектора в данном базисе. В этом случае пишут:
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть