We call the longest side the hypotenuse
We pick one of the other angles--not the right angle
We name the other two sides relative to that angle
Here’s the
right angle
hypotenuse
adjacent
opposite
b) tg (3x-π / 3) = √3
B) We write in the form: 3x-π / 3 = arctg (√3) + πk. We know that: arctg (√3) = π / 3 3x-π / 3 = π / 3 + πk => 3x = 2π / 3 + πk => x = 2π / 9 + πk / 3 The answer is: x = 2π / 9 + πk / 3, where k is an integer.
32 + 42 = 52, or 9 + 16 = 25
hyp = sqrt(adj2 + opp2)
5 = sqrt(9 + 16)
25 + 144 = 169
The ratios depend on the shape of the triangle (the angles) but not on the size
When k <0, the solution is also less than zero, we do not fall into our segment.
For k = 0, x = π / 16, we are in the given interval [0; Π].
For k = 1, x = π / 16 + π / 2 = 9π / 16, again we have got.
For k = 2, x = π / 16 + π = 17π / 16, and here we are no longer there, and therefore for large k we also will not fall.
The answer is: x = π / 16, x = 9π / 16
If you know the angle marked in red (call it A) and you know the length of the adjacent side, then
tan A = opp / adj, so length of opposite side is given by
opp = adj * tan A
cos A = adj / hyp, so length of hypotenuse is given by
hyp = adj / cos A
б)tg(3x- π/3)= √3
The answer is: x = 2π / 9 + πk / 3, where k is an integer.
B) We write in the form: 3x-π / 3 = arctg (√3) + πk.
We know that:
arctg (√3) = π / 3 3x-π / 3 = π / 3 + πk => 3x = 2π / 3 + πk => x = 2π / 9 + πk / 3
The answer is:
x = 2π / 9 + πk / 3, where k is an integer
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть