The Chain Rule презентация

Barnett/Ziegler/Byleen Business Calculus 11e Composite Functions Definition: A function m is a composite of functions f and g if

Слайд 1Barnett/Ziegler/Byleen Business Calculus 11e
Learning Objectives for Section 11.4 The Chain Rule
The

student will be able to form the composition of two functions.
The student will be able to apply the general power rule.
The student will be able to apply the chain rule.

Слайд 2Barnett/Ziegler/Byleen Business Calculus 11e
Composite Functions
Definition: A function m is a composite

of functions f and g if
m(x) = f [g(x)]
The domain of m is the set of all numbers x such that x is in the domain of g and g(x) is in the domain of f.

Слайд 3Barnett/Ziegler/Byleen Business Calculus 11e
General Power Rule
We have already made extensive use

of the power rule:

Now we want to generalize this rule so that we can differentiate composite functions of the form [u(x)]n, where u(x) is a differentiable function. Is the power rule still valid if we replace x with a function u(x)?


Слайд 4Barnett/Ziegler/Byleen Business Calculus 11e
Example
Let u(x) = 2x2 and f (x) =

[u(x)]3 = 8x6. Which of the following is f ’(x)?
(a) 3[u(x)]2 (b) 3[u’(x)]2 (c) 3[u(x)]2 u’(x)

Слайд 5Barnett/Ziegler/Byleen Business Calculus 11e
Example
Let u(x) = 2x2 and f (x) =

[u(x)]3 = 8x6. Which of the following is f ’(x)?
(a) 3[u(x)]2 (b) 3[u’(x)]2 (c) 3[u(x)]2 u’(x)
We know that f ’(x) = 48x5.
(a) 3[u(x)]2 = 3(2x2)2 = 3(4x4) = 12 x4. This is not correct.
(b) 3[u’(x)]2 = 3(4x)2 = 3(16x2) = 48x2. This is not correct.
(c) 3[u(x)]2 u’(x) = 3[2x2]2(4x) = 3(4x4)(4x) = 48x5. This is the correct choice.

Слайд 6Barnett/Ziegler/Byleen Business Calculus 11e
Generalized Power Rule
What we have seen is an

example of the generalized power rule: If u is a function of x, then

For example,


Слайд 7Barnett/Ziegler/Byleen Business Calculus 11e
Chain Rule
Chain Rule: If y = f (u)

and u = g(x) define the composite function y = f (u) = f [g(x)], then

We have used the generalized power rule to find derivatives of composite functions of the form f (g(x)) where f (u) = un is a power function. But what if f is not a power function? It is a more general rule, the chain rule, that enables us to compute the derivatives of many composite functions of the form f(g(x)).


Слайд 8Barnett/Ziegler/Byleen Business Calculus 11e
Generalized Derivative Rules
1.
2.
3.
If y = u n ,

then y’ = nu n - 1 ⋅ du/dx

If y = ln u, then y’ = 1/u ⋅ du/dx

If y = e u, then y ’ = e u ⋅ du/dx


Слайд 9Barnett/Ziegler/Byleen Business Calculus 11e
Examples for the Power Rule
Chain rule terms are

marked:







Слайд 10Barnett/Ziegler/Byleen Business Calculus 11e
Examples for Exponential Derivatives


Слайд 11Barnett/Ziegler/Byleen Business Calculus 11e
Examples for Logarithmic Derivatives


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика