Now we want to generalize this rule so that we can differentiate composite functions of the form [u(x)]n, where u(x) is a differentiable function. Is the power rule still valid if we replace x with a function u(x)?
For example,
We have used the generalized power rule to find derivatives of composite functions of the form f (g(x)) where f (u) = un is a power function. But what if f is not a power function? It is a more general rule, the chain rule, that enables us to compute the derivatives of many composite functions of the form f(g(x)).
If y = ln u, then
y’ = 1/u ⋅ du/dx
If y = e u, then
y ’ = e u ⋅ du/dx
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть