Solution methods for bilevel optimization презентация

Overview Definition of a bilevel problem and its general form Optimality (KKT-type) conditions Reformulation of a general bilevel problem Iterative (descent direction) methods Numerical results

Слайд 1Solution Methods for Bilevel Optimization
Andrey Tin
A.Tin@soton.ac.uk
School of Mathematics

Supervisors: Dr Alain B.

Zemkoho, Professor Jörg Fliege



Слайд 2Overview
Definition of a bilevel problem and its general form
Optimality (KKT-type) conditions
Reformulation

of a general bilevel problem
Iterative (descent direction) methods
Numerical results

Слайд 3Stackelberg Game (Bilevel problem)


Players: the Leader and the Follower
The Leader is

first to make a decision
Follower reacts optimally to Leader’s decision
The payoff for the Leader depends on the follower’s reaction

Слайд 4Example
Taxation of a factory
Leader – government
Objectives: maximize profit and minimize pollution
Follower

– factory owner
Objectives: maximize profit

Слайд 5
General structure of a Bilevel problem
 


Слайд 6Important Sets
 


Слайд 7
General linear Bilevel problem
 


Слайд 8Solution methods


Vertex enumeration in the context of Simplex method
Kuhn-Tucker approach
Penalty approach
Extract

gradient information from a lower objective function to compute directional derivatives of an upper objective function








Слайд 9Concept of KKT conditions
 


Слайд 10
Value function reformulation
 


Слайд 11
KKT for value function reformulation
 
 


Слайд 12Assumptions


 


Слайд 13KKT-type optimality conditions for Bilevel


Слайд 14Further Assumptions (for simpler version)


 


Слайд 15Simpler version of KKT-type conditions


 


Слайд 16NCP-Functions


 


Слайд 17Problems with differentiability


Fischer-Burmeister is not differentiable at 0


Слайд 19
Simpler version with perturbed Fischer-Burmeister NCP functions
 
 


Слайд 20Iterative methods
 


Слайд 21Newton method


 


Слайд 22 
Pseudo inverse
 
 


Слайд 23

Gauss-Newton method
 


Слайд 24

Singular Value Decomposition (SVD)
 


Слайд 25

SVD for wrong direction
 


Слайд 26SVD for right direction
 


Слайд 27Levenberg-Marquardt method
 


Слайд 28Numerical results



Слайд 29Plans for further work


 


Слайд 30Plans for further work


6. Construct the own code for Levenberg-Marquardt method

in the context of solving bilevel problems within defined reformulation.
7. Search for good starting point techniques for our problem. 8. Do the numerical calculations for the harder reformulation defined .
9. Code Newton method with pseudo-inverse.
10. Solve the problem assuming strict complementarity
11. Look at other solution methods.

Слайд 31Thank you! Questions?



Слайд 32References


 


Слайд 33References


 


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика