Mathematical Induction презентация

Mathematical Induction Let Sn, n = 1,2,3,… be statements involving positive integer numbers n. Suppose that 1. S1 is true. 2. If Sk is true, then Sk +1 is also

Слайд 1Calculus++ Light
Sudoku no more!


Слайд 2Mathematical Induction
Let Sn, n = 1,2,3,… be statements involving positive integer

numbers n.
Suppose that
1. S1 is true.
2. If Sk is true, then Sk +1 is also true.

Then Sn is true for all positive integer numbers n.


Слайд 3 for all positive integers n. If it is assumed that the

sequence {xn} converges, then

Question 1. Let x1 = 1 and

Solution. First, we find fixed points of the relationship

That is, we find solutions of the equation

Next, we calculate a few terms of the sequence.


Слайд 4Therefore, the principle of mathematical induction tells us that

for any positive integer n.

Our first statement S1:

The general statement Sn:

The first statement S1 is correct.
Let us assume that a statement Sk : is also correct. Then


Слайд 5 in both parts of the relationship
But, what if this is a

free-response question?
Then we can pass to the limit

Since we know that the sequence xn converges


Since is a continuous function for we obtain


Слайд 6 Question 1:
Answers to Questions from Light #2:
Sequences and Limits
Question 2:
Question

4:

Question 3a:

Question 3b:

Integer part of

Question 5:

You have to show that


Слайд 7Calculus++
Also known as Hysterical Calculus


Слайд 8Question 1b. Find the limit of the sequence
Solution. We have
Using the

equivalence

we obtain


Слайд 9Using now the equivalence
we obtain
Therefore,



Слайд 10Question 2b. Find the following limit
Solution. Actually, the equivalence
gives an incorrect

result for this limit.

To obtain a correct result we have to use

Incorrect!


Слайд 11The last equivalence yields


Слайд 12Question 3. Find the following limit
Solution. We have to find precise

equivalent functions for each term at x = 0

Therefore,


Слайд 13A similar (but even more difficult) calculation yields
Therefore
and



Слайд 14Picture of the Week


Слайд 15Question 8. The initial location of a snail is the point

S1 = (0,0).
The first 3 turning points, keeping the snail confined inside a unit square, are given by S2 = (½, 1), S3 = (1, ½), and S4 = (½, 0).
After that the snail always heads towards the midpoint of the next path segment that it sees, without crossing its own path.
That is, the coordinates (xn, yn) of the turning points Sn are given by

and

for n = 5,6,7,…


Слайд 16a) Show that xn+3 + xn+2 + xn+1 + ½ xn

= 2,
and find a similar relationship for the y-coordinates.
b) Find the x and y coordinates of the limiting point of the snail path.
c) Repeat parts a) and b) for a snail confined inside an isosceles triangle.
The initial location of the snail is S1 = (0,0).
The first 2 turning points are S2 = (¾, ½) and S3 = (½, 0).


Слайд 17Snail path in the xy – plane.
y


Слайд 18Solution. Write down the characteristic equation for the formula
Unfortunately, this

equation has only two real solutions, but it definitely has a solution

Divide the characteristic polynomial by

Denote

then


Слайд 19Therefore
Thus
If the sequence xn converges to , then
Passing to

the limit in the relationship

we obtain

Hence


Слайд 20Snail path in the xy – plane.
y


Слайд 21 Answers to Questions from Seminar 2.
Questions 1b and 1c:
Question 8: n

= 20182 – 1.

Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика