Then Sn is true for all positive integer numbers n.
Question 1. Let x1 = 1 and
Solution. First, we find fixed points of the relationship
That is, we find solutions of the equation
Next, we calculate a few terms of the sequence.
Our first statement S1:
The general statement Sn:
The first statement S1 is correct.
Let us assume that a statement Sk : is also correct. Then
Since we know that the sequence xn converges
Since is a continuous function for we obtain
Question 3a:
Question 3b:
Integer part of
Question 5:
You have to show that
To obtain a correct result we have to use
Incorrect!
Therefore,
and
for n = 5,6,7,…
Divide the characteristic polynomial by
Denote
then
we obtain
Hence
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть