Лекция 03. Позиционные и метрические задачи презентация

1. Общие положения

Слайд 1Позиционные и метрические
задачи



Слайд 21. Общие положения


Слайд 3


























Позиционные задачи –
задачи на определение относительного положения или
общих элементов геометрических фигур.

Это

задачи на принадлежность
✓ точки некоторой линии;
✓ линии и точки некоторой поверхности.

Это задачи, выражающие отношения между геометрическими фигурами.

Это задачи на определение
общих элементов геометрических фигур.

Слайд 4


























Метрические задачи – задачи на измерение расстояний и угловых величин.

Это задачи на

определение действительных величин и формы геометрических фигур.

Это задачи на определений расстояния между геометрическими фигурами.

Это задачи на определение других характеристик по метрически искаженным проекциям.

Слайд 5


























Решение метрических задач основано на том, что любая плоская фигура, параллельная плоскости проекций, проецируется на

эту плоскость в конгруэнтную фигуру.

Слайд 62. Способы решения метрических задач


Слайд 7


























Рассмотрим три способа решения метрических задач:
способ выносных чертежей.
вычислительный способ


комбинированный способ

В основе применения этих способов лежит свойство параллельного проектирования сохранять отношение длин параллельных отрезков.

Слайд 8


























Способ выносных чертежей

Строим плоскую фигуру, подобную оригиналу.
Выполняем на

ней строгие построения.
Переносим результат на исходный чертёж.


Слайд 9



























Фактически, выносной чертёж – это некоторое сечение исходной 3-хметной фигуры, т.е. некоторая плоскость, в

которой все построения выполняются либо с точностью до подобия (сохраняющего углы и отношения сторон), либо вообще строго, если известны абсолютные величины.

Слайд 10


























Вычислительный способ

Вычисляем все нужные соотношения (при необходимости вводя

вспомогательные параметры).
Переносим полученные результаты на исходный чертёж.


Слайд 11


























Комбинированный способ

Строим плоскую фигуру, подобную оригиналу, выполняя при

этом необходимые вычисления.
Переносим полученные результаты на исходный чертёж.


Слайд 123. Примеры задач


Слайд 13


























Задача 1

Дан куб ABCDA1B1C1D1
Построим оригиналы следующих фигур:
а) диагонального

сечения АA1С1С;
б) сечения ASC, где точка S – середина ребра DD1;
в) сечения APQC, где точка Р – середина ребра А1В1, а точка Q – середина ребра B1C1.

Слайд 14


























Задача 2

В кубе ABCDA1B1C1D1 через вершину D1 проведем перпендикуляр на прямую СК, где точка

К – точка пересечения диагоналей грани АА1В1В.

Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика