Functions of Random Variables 2. Method of Distribution Functions презентация

Method of Distribution Functions X1,…,Xn ~ f(x1,…,xn) U=g(X1,…,Xn) – Want to obtain fU(u) Find values in (x1,…,xn) space where U=u Find region where U≤u Obtain FU(u)=P(U≤u) by integrating f(x1,…,xn) over

Слайд 1Functions of Random Variables


Слайд 2Method of Distribution Functions
X1,…,Xn ~ f(x1,…,xn)
U=g(X1,…,Xn) – Want to obtain fU(u)
Find

values in (x1,…,xn) space where U=u
Find region where U≤u
Obtain FU(u)=P(U≤u) by integrating f(x1,…,xn) over the region where U≤u
fU(u) = dFU(u)/du

Слайд 3Example – Uniform X
Stores located on a linear city with density

f(x)=0.05 -10 ≤ x ≤ 10, 0 otherwise
Courier incurs a cost of U=16X2 when she delivers to a store located at X (her office is located at 0)

Слайд 4Example – Sum of Exponentials
X1, X2 independent Exponential(θ)
f(xi)=θ-1e-xi/θ xi>0, θ>0,

i=1,2
f(x1,x2)= θ-2e-(x1+x2)/θ x1,x2>0
U=X1+X2

Слайд 5Method of Transformations
X~fX(x)
U=h(X) is either increasing or decreasing in X
fU(u) =

fX(x)|dx/du| where x=h-1(u)

Can be extended to functions of more than one random variable:
U1=h1(X1,X2), U2=h2(X1,X2), X1=h1-1(U1,U2), X2=h2-1(U1,U2)


Слайд 6Example
fX(x) = 2x 0≤ x ≤ 1, 0 otherwise
U=10+500X (increasing

in x)
x=(u-10)/500
fX(x) = 2x = 2(u-10)/500 = (u-10)/250
dx/du = d((u-10)/500)/du = 1/500
fU(u) = [(u-10)/250]|1/500| = (u-10)/125000 10 ≤ u ≤ 510, 0 otherwise

Слайд 7Method of Conditioning
U=h(X1,X2)
Find f(u|x2) by transformations (Fixing X2=x2)
Obtain the joint density

of U, X2:
f(u,x2) = f(u|x2)f(x2)
Obtain the marginal distribution of U by integrating joint density over X2


Слайд 8Example (Problem 6.11)
X1~Beta(α=2,β=2) X2~Beta(α=3,β=1) Independent
U=X1X2
Fix X2=x2 and get f(u|x2)


Слайд 10Method of Moment-Generating Functions
X,Y are two random variables
CDF’s: FX(x) and FY(y)
MGF’s:

MX(t) and MY(t) exist and equal for |t|0
Then the CDF’s FX(x) and FY(y) are equal
Three Properties:
Y=aX+b ⇒ MY(t)=E(etY)=E(et(aX+b))=ebtE(e(at)X)=ebtMX(at)
X,Y independent ⇒ MX+Y(t)=MX(t)MY(t)
MX1,X2(t1,t2) = E[et1X1+t2X2] =MX1(t1)MX2(t2) if X1,X2 are indep.


Слайд 11Sum of Independent Gammas


Слайд 12Linear Function of Independent Normals


Слайд 13Distribution of Z2 (Z~N(0,1))


Слайд 14Distributions of and S2 (Normal data)


Слайд 15Independence of and S2 (Normal Data)
Independence of T=X1+X2

and D=X2-X1 for Case of n=2

Слайд 16Independence of and S2 (Normal Data) P2
Independence of

T=X1+X2 and D=X2-X1 for Case of n=2

Thus T=X1+X2 and D=X2-X1 are independent Normals and & S2 are independent


Слайд 17Distribution of S2 (P.1)


Слайд 18Distribution of S2 P.2


Слайд 19Summary of Results
X1,…Xn ≡ random sample from N(μ, σ2) population
In practice,

we observe the sample mean and sample variance (not the population values: μ, σ2)
We use the sample values (and their distributions) to make inferences about the population values

Слайд 20Order Statistics
X1,X2,...,Xn ≡ Independent Continuous RV’s
F(x)=P(X≤x) ≡ Cumulative Distribution Function
f(x)=dF(x)/dx ≡

Probability Density Function

Order Statistics: X(1) ≤ X(2) ≤ ...≤ X(n) (Continuous ⇒ can ignore equalities)
X(1) = min(X1,...,Xn)
X(n) = max(X1,...,Xn)

Слайд 21Order Statistics


Слайд 22Example
X1,...,X5 ~ iid U(0,1)
(iid=independent and identically distributed)


Слайд 24Distributions of Order Statistics
Consider case with n=4
X(1) ≤x can be one

of the following cases:
Exactly one less than x
Exactly two are less than x
Exactly three are less than x
All four are less than x
X(3) ≤x can be one of the following cases:
Exactly three are less than x
All four are less than x
Modeled as Binomial, n trials, p=F(x)

Слайд 25Case with n=4


Слайд 26General Case (Sample of size n)


Слайд 27Example – n=5 – Uniform(0,1)


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика