Поколения ЭВМ презентация

Содержание

Первое поколение ЭВМ (1938 - 1956 годы) ЭВМ первого поколения в качестве элементной базы использовали электронные лампы и реле; Объем оперативной памяти составлял от 512 до 2048 байт. Память выполнялась

Слайд 1Поколения ЭВМ


Слайд 2Первое поколение ЭВМ (1938 - 1956 годы)
ЭВМ первого поколения в качестве элементной

базы использовали электронные лампы и реле;
Объем оперативной памяти составлял от 512 до 2048 байт. Память выполнялась на триггерах, позднее на ферритовых сердечниках;
быстродействие было, как правило, в пределах 5—30 тыс. арифметических оп/с;
они отличались невысокой надежностью, требовали систем охлаждения и имели значительные габариты. Процесс программирования требовал значительного искусства, хорошего знания архитектуры ЭВМ и ее программных возможностей.

На фото: ферритовые сердечники


Слайд 3Первое поколение ЭВМ
Все быстродействие определялось самым медленным элементом это внутренняя память

которая снижала общую эффективность. Во время первого поколения пытались убрать этот недостаток за счет асинхронной работы компонентов. Введения понятие буффера, когда передаваемые данные копировались в буфер, освобождая устройство для следующих операций. Уже тогда для работы устройства ввода-вывода использовалась собственная память

На первых порах данного этапа использовалось программирование в машинных кодах ЭВМ, затем появились автокоды и ассемблеры. Как правило, ЭВМ первого поколения использовались для научно-технических расчетов, а самим процессом программирования занимался весьма узкий круг математиков, инженеров-электриков и физиков

Большим недостатком первого поколения в том, что изначально данные машины разрабатывались для выполнения арифметических задач. И решение на них каких либо аналитических задач было весьма трудоемко.


Слайд 4Первое поколение ЭВМ
С началом второй мировой войны правительства разных стран начали

разрабатывать вычислительные машины, осознавая их стратегическую роль в ведении войны. Увеличение финансирования в значительной степени стимулировало развитие вычислительной техники.

В 1930-е годы германские ученые и инженеры разработали принципы построения электронных вычислительных машин на основе уже работавших в те времена табуляторов Холлерита и механических арифмометров.

В 1938 году была запущена первая в мире электронная вычислительная машина Z1, созданная под руководством немецкого инженера Конрада Цузе, а в следующем, 1941 году - значительно усовершенствованная модель Z2, выполнявшая расчеты, необходимые при проектировании самолетов и баллистических ракет Вернера фон Брауна

На фото: Конрад Цузе и z1


Слайд 5Первое поколение ЭВМ
В 1943 году английские инженеры завершили создание вычислительной машины

для дешифровки сообщений немецкой армии, названной "Колосс". Однако эти устройства не были универсальными вычислительными машинами, они предназначались для решения конкретных задач.

На фото: Алан Тьюринг

На фото: «Колосс»


Слайд 6Первое поколение ЭВМ
В компьютере "Марк I" использовался принцип электромеханического реле, заключающийся

в том, что электромагнитные сигналы перемещали механические части. "Марк I" был довольно медленной машиной: для того чтобы произвести одно вычисление требовалось 3-5 с. Однако, несмотря на огромные размеры и медлительность. "Марк I" управлялся с помощью программы, которая вводилась с перфоленты. Это дало возможность, меняя вводимую программу, решать довольно широкий класс математических задач.

В 1944 году, получив данные о немецких разработках через разведку, американский инженер Говард Эйкен при поддержке фирмы IBM сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный "Марк I", по площади занимал примерно половину футбольного поля и включал более 600 километров кабеля.

На фото: «Марк I»


Слайд 7Первое поколение ЭВМ
В 1946 году американские ученые Джон Мокли и Дж.

Преспер Эккерт сконструировали электронный числовой интегратор и вычислитель(ЭНИАК) - компьютер, в котором электромеханические реле были заменены на электронные вакуумные лампы.

Применение вакуумных ламп позволило увеличить скорость работы ЭНИАК в 1000 раз по сравнению с "Марк I". ЭНИАК состоял из 18000 вакуумных ламп, 70000 резисторов, 5 миллионов соединительных спаек и потреблял 160 кВт электрической энергии, что по тем временам было достаточно для освещения большого города. ЭНИАК использовался для расчета баллистических таблиц, расчетов в области атомной энергетики (то есть повторением того, что делали немцы), аэродинамики.

В 1951 году был создан первый компьютер, предназначенный для коммерческого использования, - УНИАК (универсальный автоматический компьютер). В 1952 году с помощью УНИАК был предсказан результат выборов президента США.

На фото: ЭНИАК


Слайд 8Первое поколение ЭВМ
Компьютеры первого поколения в Росси появились с опозданием. К

ним можно отнести МЭСМ – Малая Электронная Счетная Машина разработанная в институте электротехники АН УССР под руководством С.А. Лебедева 1950 г. МЭСМ стала первой отечественной универсальной ламповой вычислительной машиной в СССР. В 1952-1953 годах МЭСМ оставалась самой быстродействующей (50 операций в секунду) вычислительной машиной в Европе.

Отечественный компьютер первого поколения БЭСМ-2. В нем было около 4 000 электронных ламп. Он был собран на трех стойках, одна из них была стойка магнитного оперативного запоминающего устройства и пульт управления

На 1 фото: МЭСМ, на 2 фото БЭСМ-2


Слайд 9Первое поколение ЭВМ
В ЭВМ первого поколения реализованы фундаментальные принципы построения вычислительных

машин.

Один из больших недостатков этих компьютеров это не согласованность быстродействия арифметического - логического устройства, управляющего устройства и оперативной памяти из-за различной элементной базы.


Слайд 10Второе поколение ЭВМ (1960-1970-е годы)
Второе поколение начинается с ЭВМ RCA-501, появившейся в

1959 г. в США и созданной на полупроводниковой элементной базе. Между тем, еще в 1955 г. была создана бортовая транзисторная ЭВМ для межконтинентальной баллистической ракеты ATLAS.

Новая элементная технология позволила резко повысить надежность ВТ, снизить ее габариты и потребляемую мощность, а также значительно повысить производительность. Это позволило создавать ЭВМ с большими логическими возможностями и производительностью, что способствовало распространению сферы применения ЭВМ на решение задач планово-экономических, управления производственными процессами и др.

В рамках второго поколения все более четко проявляется дифференциация ЭВМ на малые, средние и большие.

Конец 50-х годов характеризуется началом этапа автоматизации программирования, приведшим к появлению языков программирования Fortran (1957 г.), Algol-60 и др.


Слайд 11Второе поколение ЭВМ
Логические схемы второго поколения ЭВМ строились на дискретных полупроводниковых

и магнитных элементах (диоды, биполярные транзисторы, тороидальные ферритовые микро трансформаторы). В качестве конструктивно-технологической основы использовались схемы с печатным монтажом (платы из фольгированного гетинакса). Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках1 и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.


Слайд 12Второе поколение ЭВМ
В 1964 году появился первый монитор для компьютеров -

IBM 2250.

Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселей. Он имел частоту кадровой развертки 40 Гц.


Слайд 13Второе поколение ЭВМ
Создаваемые на базе компьютеров системы управления потребовали от ЭВМ

более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.
 
В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.
 
Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина SEAC (Standarts Eastern Automatic Computer), созданная в 1951 году.
 
В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

На фото: машина SEAC


Слайд 14Третье поколение ЭВМ 1968 - 1973
 Новый прорыв в производительности, надежности и

миниатюризации позволила сделать технология интегральных схем, ознаменовавшая собой переход на третье поколение ЭВМ, создаваемых с 1964 по 1974 г.г.[1]



Слайд 15Третье поколение ЭВМ 1968 - 1973
Преимущества:
1. Увеличилась надежность ЭВМ. Надежность интегральных

схем – на порядок выше надежности аналогичных схем на дискретных компонентах
2. За счет повышения плотности упаковки электронных схем, уменьшилось время передачи сигнала по проводникам
3. Производство интегральных схем хорошо поддается автоматизацииь упаковки электронных схем уменьшила на несколько порядков габариты, массу и потребляемую мощность ЭВМ,



Слайд 16Третье поколение ЭВМ 1968 - 1973
Для обеспечения питания таких ЭВМ достаточно

два – четыре киловатта.
ЭВМ третьего поколения можно было встретить на борту самолета, корабля, подводной лодке, спутнике. Ощутимые плоды микроминиатюризации. Эти машины называли Мини-ЭВМ.

В качестве внешней памяти стали применять магнитные диски. Накопитель магнитных дисков представлял несколько дисков вращающихся на одном шпинделе. Диски были расположены на небольшом расстоянии друг от друга. Между ними находился блок головок.


Слайд 17Третье поколение ЭВМ 1968 - 1973
Серийный выпуск интегральных схем был налажен

в 1961 году, тогда же была создана фирмой " Texas Instruments" по заказу ВВС США первая экспериментальная ЭВМ на интегральных схемах. Разработка велась 9 месяцев и была завершена в 1961г. ЭВМ имела всего 15 команд, была одноадресной, тактовая частота была 100 КГц, емкость запоминающего устройства – всего 30 чисел

Слайд 18Четвертое поколение ЭВМ 1974 – 1982
Новым этапом для развития ЭВМ послужили

большие интегральные схемы (БИС). Элементная база компьютеров четвертого поколения это БИС. Стремительное развитие электроники, позволило разместить на одном кристалле тысячи полупроводников. Такая миниатюризация привела к появлению недорогих компьютеров.



Слайд 19Четвертое поколение ЭВМ 1974 – 1982
Характеристики ЭВМ четвертого поколения
Мультипроцессорность
Языки высокого уровня
Компьютерные

сети
Параллельная и последовательная обработка данных


Применение модульности для создания программного обеспечения
Средняя задержка сигнала 0.7 нс/вентиль
Впервые модули операционной системы начали реализовывать на аппаратном уровне
Базовым элементом оперативной памяти стал полупроводник. Чтение запись 100-150 нс.


Слайд 20Четвертое поколение ЭВМ 1974 – 1982
Этого поколения представляют собой многопроцессорные и

многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.
Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) - ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые ПК.


Слайд 21Четвертое поколение ЭВМ 1974 – 1982
Одним из первых персональных компьютеров четвертого

поколения считается Altair-8800. Созданный на базе микропроцессора Intel-8080. Его появление стимулировало рост периферийных устройств, компиляторов высокого уровня.



Слайд 22Пятое поколение ЭВМ (1982-2010 Наши дни)

Если говорить о предыдущих поколениях то

первое это ламповые компьютеры, второе – транзисторные, третье – интегральные схемы, четвертое – микропроцессоры. Но пятое поколение не имеет отношение к данной градации.

Пятое поколение компьютеров это название «плана действий» по развитию IT-индустрии. И не смотря на то, что пятое поколение базируется на микропроцессорах как и четвертое т.е. у них общая элементная база. А именно по этому критерию разделяют компьютеры на поколения. Тем не менее сегодняшние компьютеры относят к пятому поколению.

Слайд 23Пятое поколение ЭВМ
ЭВМ пятого поколения — это ЭВМ будущего. Программа разработки,

так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.


Слайд 24Пятое поколение ЭВМ
К сожалению, японский проект ЭВМ пятого поколения повторил трагическую

судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.



Слайд 25Пятое поколение ЭВМ
Многие успехи, которых достиг искусственный интеллект, используют в промышленности

и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика