Machine Translation презентация

Introduction sub-field of computational linguistics that investigates the use of software to translate text or speech from one natural language to another (http://en.wikipedia.org/) Use: translation of large amount of date in

Слайд 1Machine Translation
MT


Слайд 2Introduction
sub-field of computational linguistics that investigates the use of software to

translate text or speech from one natural language to another (http://en.wikipedia.org/)
Use: translation of large amount of date in the shortest possible time
Standard documents
Instructions and manuals
Web sites, multilingual search
Reference information(addresses, recipes, etc.)
Aim: to understand the main contents of the document in a foreign language unknown to the user
NOT to be used instead of human translation !!!


Слайд 3Approaches to machine translation

Rule-based approach
Statistical
Example-based approach

Hybrid machine translation


Слайд 4Rule-based translation
Stages
Morphological analyses of source language
Parsing source language (syntactic groups)
Getting syntactic

information about each word
Dictionary based translation
example:

A girl eats an apple. (Eng.-Ger.)
stages of translation:
1st: getting basic part-of-speech information of each source word: a = ind.art.; girl = n.; eats = v.; an = ind.art.; apple = n.
2nd: getting syntactic information about the verb “to eat”: here: eat – Pr. Simple, 3rd Pers. Sing., Act. V.
3rd: parsing the source sentence:(an apple) = the object of eat
4th: translate English words into Germana (category = indef.article) => ein (category = indef.article)girl (category = noun) => Mädchen…
5th: finding appropriate inflected forms: A girl eats an apple. => Ein Mädchen isst einen Apfel.


Слайд 5Statistical translation
Translations are generated according to probability distribution on the basis

of statistical models whose parameters are derived from the analysis of bilingual text corpora
Benefits
Better use of resources
More natural translations
No programmers or linguists* involved

Shortcomings
Corpus creation can be costly for users with limited resources.
The results are unexpected. Superficial fluency can be deceiving.
Statistical machine translation does not work well between languages that have significantly different word orders







Слайд 6Статистический перевод
Основа - параллельный корпус
Вероятности назначаются подсчетом наиболее вероятного варианта перевода
Оценки

вероятности зависят от объема и качества обучающего корпуса
Лингвистическая информация: разбиение на предложения, графематический анализ, морфология
При наличии корпуса простейшая система перевода может быть сделана на 2 недели

Слайд 7Rule-based vs. statistical
news:
document:


Слайд 8Rule-based translation
Types

Dictionary-based (direct)

Transfer-based

Interlingual


Слайд 9Dictionary-based (direct)
word by word translation
with or without morphological analysis or lemmatisation
Application
translation of

long lists of phrases on the subsentential (i.e., not a full sentence) level, e.g. lists, inventories or simple catalogs of products and services.

Слайд 10Direct translation example


Слайд 11Transfer-based machine translation
1. Analyzing the input text for morphology and syntax

(and sometimes semantics)

2. Creating an internal representation

3. Generating translation using both bilingual dictionaries and grammatical rules



Sentence in a source language

Source language structure

Sentence in a target language

Target language structure

analysis

transfer

synthesis


Слайд 12Interlingua machine translation
the source language is transformed into an interlingua, i.e.,

an abstract language-independent representation
the target language is generated from the interlingua.



Слайд 13Transfer vs. interlingua


Слайд 14Hybrid machine translation 
method of machine translation characterized by the use of multiple

approaches within a single machine translation system.

Types:
RBMT guided by statistics
Statistical method guided by RBMT

Слайд 15MT software


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика