Информатика. Компьютерная графика презентация

Содержание

Учебные вопросы: Растровые алгоритмы построения геометрических фигур Отрезки прямой линии Окружность и эллипс Кривые и поверхности Безье Методы обработки растровых изображений

Слайд 1МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (национальный исследовательский университет)» (МАИ)

Кафедра эксплуатации и испытания летательных аппаратов

Компьютерная графика

Информатика (2)

Выполнил студент: Попов В.Д.
Группа: Т20-209с-16
Преподаватель: Козлова О.В.
Дата: 22.05.2018


Слайд 2Учебные вопросы:
Растровые алгоритмы построения геометрических фигур
Отрезки прямой линии
Окружность и эллипс
Кривые

и поверхности Безье
Методы обработки растровых изображений

Слайд 3
Растровые алгоритмы построения геометрических фигур


Слайд 4Растровое изображение — это файл данных или структура, представляющая собой сетку

пикселей или точек цветов (на практике прямоугольную) на компьютерном мониторе, бумаге и других отображающих устройствах и материалах.

Растровые алгоритмы построения геометрических фигур


Слайд 5Важными характеристиками изображения являются:
- количество пикселей. Может указываться отдельно количество пикселей

по ширине и высоте (1024*768, 640*480,...) или же, редко, общее количество пикселей (обычно измеряется в мегапикселях);
- количество используемых цветов (или глубина цвета);
- цветовое пространство RGB, CMYK, XYZ, YCbCr и др.

Растровые алгоритмы построения геометрических фигур


Слайд 6
Отрезки прямой линии Алгоритм Брезенхема


Слайд 7Алгоритм Брезенхэма— это алгоритм, определяющий, какие точки двухмерного растра нужно закрасить,

чтобы получить близкое приближение прямой линии между двумя заданными точками. Алгоритм широко используется, в частности, для рисования линий на экране компьютера.

Отрезки прямой линии


Слайд 8Алгоритм
Отрезок рисуется между двумя точками — (x0,y0) и (x1,y1), где в

этих парах указаны колонка и строка, соответственно, номера которых растут вправо и вниз. Сначала мы будем предполагать, что наша линия идёт вниз и вправо, причём горизонтальное расстояние x1 − x0 превосходит вертикальное y1 − y0, т.е. наклон линии от горизонтали — менее 45°. Наша цель состоит в том, чтобы для каждой колонки x между x0 и x1, определить, какая строка y ближе всего к линии, и нарисовать точку (x,y).

Отрезки прямой линии


Слайд 9
Отрезки прямой линии Иллюстрация работы алгоритма


Слайд 10Построение отрезка
Общая формула линии между двумя точками:

Поскольку мы знаем колонку —

x, то строка — y — получается округлением к целому следующего значения:





Отрезки прямой линии


Слайд 11Однако, вычислять точное значение этого выражения — глупо; достаточно заметить, что

y растет от y0 и за каждый шаг мы добавляем к x единичку и добавляем к y значение наклона которое можно вычислить заранее. Более того, на каждом шаге мы делаем одно из двух: либо сохраняем тот же y, либо увеличиваем его на 1.

Отрезки прямой линии


Слайд 12
Алгоритм построения окружности


Слайд 13Формулы, параметрически определяющие окружность.
Эти формулы достаточно просты и могут быть

получены непосредственно из определения тригонометрических функций. Согласно им окружность радиуса R с центром в точке (x0, y0) может быть определена как множество точек M(x, y), координаты которых удовлетворяют системе уравнений
   
 x = x0 + R cos a      y = y0 + R sin a,
   где a принадлежит [0;2p).

Алгоритм построения окружности


Слайд 14Но на самом деле мы строим не окружность, а правильный 360-угольник.

Весьма вероятно, что в недалеком будущем аппаратные средства позволят добиться такой разрешающей способности дисплеев, что отличие многоугольника от окружности станет заметным на глаз. Что мы станем делать тогда? Уменьшим шаг приращения угла? Это неплохой выход, но такая ситуация обещает повториться. Итак, приведенный алгоритм нас не устраивает. Надо поискать что-нибудь свободное от упомянутых недостатков.

Алгоритм построения окружности


Слайд 15
Алгоритм построения окружности Алгоритм построения окружности Брезенхема


Слайд 16Окружность обладает центром симметрии и бесконечным количеством осей симметрии. Поэтому нет

необходимости строить всю окружность, достаточно построить некоторую ее часть и последовательным применением преобразований симметрии получить из нее полную окружность. Мы станем строить 1/8 часть окружности, заключенную в угле AOB.

Алгоритм построения окружности


Слайд 17Каждая точка этого фрагмента должна быть еще семь раз отображена с

помощью преобразований симметрии для получения полной окружности.

Алгоритм построения окружности


Слайд 18Пусть мы находимся в некоторой промежуточной фазе построения. Мы только что

поставили точку (xi, yi) и теперь должны сделать выбор между точками 1(xi+1, yi-1) и 2(xi+1, y) .
Мы строим часть окружности, заключенную в угле AOB, следовательно, подняться выше мы не можем и спуститься вниз более чем на одну точку не можем тоже.

Алгоритм построения окружности Ключевая идея алгоритма


Слайд 19
Алгоритм построения окружности Ключевая идея алгоритма


Слайд 20Реальная окружность может быть расположена относительно точек 1 и 2 одним

из пяти способов 1-5. Если мы выбераем точку 1, то тем самым говорим, что (xi+1)2+(yi-1)2 » R2. Если же выбераем точку 2, то допускаем, что (xi+1)2+(yi)2 » R2. Рассмотрим две погрешности Δi1 и Δi2:
Δi1 = (xi+1)2+(yi-1)2-R2
Δi2 = (x1+1)2+(yi)2-R2
и контрольную величинуDi = Di1+Di2.

Алгоритм построения окружности Ключевая идея алгоритма


Слайд 21При выборе точки, следующей за (xi, yi), станем руководствоваться следующим критерием:
если Δi

> 0, выберем точку 1;
если Δi £ 0, выберем точку 2.
Обоснуем разумность такого выбора. Рассмотрим знаки погрешностей Di1 и Di2 и их влияние на знак контрольной величины Di для всех пяти возможных положений окружности.

Алгоритм построения окружности Ключевая идея алгоритма


Слайд 22Простыми словами можно сказать что в этом алгоритме строится дуга окружности

для первого квадранта, а координаты точек окружности для остальных квадрантов получаются симметрично. На каждом шаге алгоритма рассматриваются три пикселя, и из них выбирается наиболее подходящий путём сравнения расстояний от центра до выбранного пикселя с радиусом окружности.

Алгоритм построения окружности


Слайд 23Бикубические поверхности Кунса предоставляют гибкое и мощное средство разработки поверхностей. Однако

их практическое использование, как и для кубических сплайновых кривых, затрудняется необходимостью задания точной, интуитивно неочевидной математической информации, например координат точек, касательных векторов и векторов кручения.

Кривые и поверхности Безье


Слайд 24Возникающие проблемы иллюстрируются на рисунках. Большинство из этих проблем можно преодолеть,

распространив понятия кривых Безье на поверхности.

Кривые и поверхности Безье


Слайд 25Поверхность Безье -параметрическая поверхность, используемая в компьютерной графике, автоматизированном проектировании, и моделировании. Это одно из распространённых пространственных обобщений кривой Безье.

Кривые и поверхности Безье


Слайд 26При кусочном моделировании для задания и изменения формы куска, представляющего собой пространственную решетку из сплайнов или Многоугольников, применяется сеть контрольных точек. 
Эти точки управления, также известные как контрольные вершины  оказывают на гибкую поверхность куска подобное магнитному влияние, при котором поверхность растягивается в том или ином направлении. Кроме того, куски можно и дальше подразделять на элементы для достижения большего разрешения и «сшивать» друг с другом, тем самым создавая сложные объёмные поверхности. Так же, как исплайновые, кусочные модели используются при создании органических форм.

Кривые и поверхности Безье


Слайд 27Декартово или тензорное произведение поверхности Безье задается в виде

Кривые и поверхности

Безье

Слайд 28В общем случае обработка растровой графики сводится к изменению цвета точек

изображения целиком или его отдельной области. Даже простая операция масштабирования растрового документа требует определенных расчетов, так как при увеличении изображения увеличивается размер растровой точки, что приводит к ухудшению качества.

Методы обработки растровых изображений


Слайд 29Растровые изображения можно:
• кадрировать – вырезать необходимую часть изображения;
• коллажировать – соединять несколько изображений друг

с другом, вносить детали одних изображений в другие, добавлять текст и пр.;
• ретушировать – устранять дефекты изображения, изменять детали;
• трансформировать, деформировать (возможна потеря в качестве), отображать зеркально, разворачивать;
• изменять цвет, тон, контраст, насыщенность всего изображения или его частей;
• изменять посредством специальной обработки – фильтров, эффектов, наложения текстур, теней, подсветки и пр.
Существует множество других вариантов, соответствующих возможностям графического редактора.

Методы обработки растровых изображений


Слайд 30Преимущества растровой графики
Растровый тип описания графики обладает следующими преимуществами:
• в растровом

виде представимо любое изображение;
• растровая графика позволяет создать практически любой рисунок, вне зависимости от сложности, в отличие, например, от векторной, где невозможно точно передать эффект перехода от одного цвета к другому без потерь в размере файла;
• распространенность – растровая графика используется сейчас практически везде: от маленьких значков до плакатов;
• высокая скорость обработки сложных изображений, если не нужно масштабирование.
Растровое представление изображения естественно для большинства устройств ввода-вывода графической информации, таких как мониторы (за исключением векторных устройств вывода), матричные и струйные принтеры, цифровые фотоаппараты, сканеры, а также сотовые телефоны.

Методы обработки растровых изображений


Слайд 31Недостатки растровой графики
Растровый вид представления графики имеет следующие недостатки:
• больший объем

памяти, необходимый для работы с изображениями, высокая требовательность к ресурсам компьютера;
• большие размеры файлов, зависимость размера файла от качества и размера изображения;
• сложность обработки, потери при редактировании, невозможность идеального масштабирования. В процессе преобразования растрового изображения исходными данными является только описание набора пикселей, поэтому возникает проблема замены меньшего числа пикселей на большее (при увеличении) или большего на меньшее (при уменьшении);
• невозможность вывода на печать на векторный графопостроитель.
Из-за этих недостатков для хранения простых рисунков рекомендуют вместо даже сжатой растровой графики использовать векторную графику.

Методы обработки растровых изображений


Слайд 32Конец презентации
СПАСИБО ЗА ВНИМАНИЕ!


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика