Eye Detection in Images Introduction To Computational and biological Vision презентация

Chapter Headings Introduction The Main algorithm: Detecting the face area Find a good candidates Find the most probability For Eyes in The Image Conclusions and Results

Слайд 1Eye Detection in Images
Introduction To Computational and biological Vision
Lecturer :

Ohad Ben Shahar

Written by : Itai Bechor


Слайд 2Chapter Headings
Introduction
The Main algorithm:
Detecting the face area
Find a good candidates
Find

the most probability For Eyes in The Image
Conclusions and Results


Слайд 3Introduction
Detecting Eyes has many applications:
For Face Recognition
May Be Use By The

Police
In Security Services
Future Use In Computers Security For Login Propses

Слайд 4Introduction
The Eye is Quite Unique Feature in the Face
It might be

easy to detect it more than other elements in the face
The Objective is To detect the Closest Area To the eyes or the Eyes

Слайд 5The Algorithm Diagram


Detect face
Detect the edge
Find radius that suits eye
Detect

the eyes




Слайд 6Images I work with

Black and white images
Head Images On a

Plain Background
Image resolution of 150x150 to 300x300

Слайд 7Extraction of the face regions
Step 1
Input Image
Step

2
Canny Edge detector

Step 3
Calculate the left
and right bound




Слайд 8Face Region Extraction


Слайд 9The Canny Edge Detector
I used Gaussian 5x5 convolution To smooth the

image to clean the noise




Слайд 10
The Gaussian Distribution
Basic normal distribution
skin
Non-skin


Слайд 11Canny Edge Detector
Compute gradient of g(m,n) using to get:


and



And finally by threshold m:


Слайд 12
Hough Circle Transformation
in my program : I Find The

Circles In The Image From Radius 1 to width/2.
A circle in 2d is :

The accumulator Holding the Votes For each Radius.


Edge point

r

(Xi,Yi)


Слайд 13Hough Circle Transformation


Слайд 14Hough Circle Transformation


Слайд 15Selecting the Eyes

Labeling Function That Find the best Match Between

Two Circles In The Eyes

Слайд 16Selecting the Eyes
Using the Following Methods:
Calculate the Distances between each two

circles .
The Slope Between The Two Circles.
The Radius similarity between two circles.
Large Number of circles in the same area

Слайд 17Experimental Results
Good Results:


Слайд 18Experimental Results


Слайд 19Experimental Results
Bad Result: Hough Didn’t detect eye circles


Слайд 20Experimental Results
Bad Result: Label Function Didn’t detect eyes.


Слайд 21Conclusion
The Algorithm need to be improved
In Order To Improve it :
Need

To Use A Eyes Database
There is special cameras that can detect the eye using an effect called The bright pupil effect .

Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика