Презентация на тему Ортогональные проекции плоскости. Относительное положение плоскостей

Презентация на тему Ортогональные проекции плоскости. Относительное положение плоскостей, предмет презентации: Графика. Этот материал содержит 62 слайдов. Красочные слайды и илюстрации помогут Вам заинтересовать свою аудиторию. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций ThePresentation.ru в закладки!

Слайды и текст этой презентации

Слайд 1
Текст слайда:

Институт фундаментального образования Кафедра “Инженерная графика”

Лектор: Стриганова Лариса Юрьевна
доцент кафедры ИГ

Лекция 3. Ортогональные проекции плоскости

Раздел: Начертательная геометрия


Тема 3.
Ортогональные проекции плоскости.
Относительное положение плоскостей





Слайд 2
Текст слайда:

Цель и задачи занятия

Определить графические способы задания плоскости на эпюре
Рассмотреть особенности плоскостей общего и частного положений в пространстве и на ортогональном чертеже

Лекция 3. Ортогональные проекции плоскости


Слайд 3
Текст слайда:

В результате изучения темы Вы будете знать:

Способы задания плоскости
Понятие «Следы плоскости»
Классификацию плоскостей общего и частного положений
Особые линии плоскости
Относительное положение прямой и плоскости
Относительное положение плоскостей

Лекция 3. Ортогональные проекции плоскости


Слайд 4
Текст слайда:

Ортогональные проекции плоскости

ПЛОСКОСТЬ – множество положений прямой линии, проходящей через одну точку пространства и пересекающих вне ее прямую линию

A

a


Лекция 3. Ортогональные проекции плоскости


Слайд 5
Текст слайда:

СПОСОБЫ ЗАДАНИЯ ПЛОСКОСТИ

1. Аналитический способ

Аx + By + Cz + D = 0

2. Графические способы

Лекция 3. Ортогональные проекции плоскости


Слайд 6
Текст слайда:

Графические способы задания плоскости

X

Z

Y

А2

А1

В1



C2

C1





В2

Существуют 6 способов задания плоскости на эпюре, каждый из которых последовательно переходит один в другой



ax

aп2

aп1

Лекция 3. Ортогональные проекции плоскости


Слайд 7
Текст слайда:

Графические способы задания плоскости

X

Z

Y

А2

А1

В1



C2

C1





В2

X

Y

b1



C2

C1

b2





1.Три точки не принадлежащие одной прямой

2. Прямая и точка вне этой прямой

Z

Лекция 3. Ортогональные проекции плоскости


Слайд 8
Текст слайда:

X

Z

Y

а2

а1

b2

b1

X

Z

Y

a2

a1

b2

b1

3. Параллельные прямые

4. Пересекающиеся прямые



К1

К2

Лекция 3. Ортогональные проекции плоскости


Слайд 9
Текст слайда:

X

Z

Y

А2

А1

В1

C2

C1

В2







5. Плоская фигура

Лекция 3. Ортогональные проекции плоскости


Слайд 10
Текст слайда:

Y


Z

X

aп1

aП3

aП2

ax

ay

az




6. Следы плоскости – линии пересечения данной плоскости с плоскостями проекций

a

a-плоскость;
aп1 - горизонтальный след плоскости a;
aп2 - фронтальный след плоскости a;
aп3 - профильный след плоскости a;
ax, ay, az - точки схода следов

Лекция 3. Ортогональные проекции плоскости


Слайд 11
Текст слайда:

Z

X

Y

Y

aП2

aп1

aП3

ax

ay

az


Z

X

aп1

aП3

aП2

ax

ay

az




a

ay





Y




Лекция 3. Ортогональные проекции плоскости


Слайд 12
Текст слайда:

ОТНОСИТЕЛЬНОЕ ПОЛОЖЕНИЕ ПЛОСКОСТЕЙ

1. Относительно плоскостей проекций плоскости в пространстве занимают:
• общее положение
• частное положение

2. Плоскости частного положения подразделяют на
плоскости параллельные плоскостям проекций – плоскости уровня
плоскости перпендикулярные плоскостям проекций – плоскости проецирующие

Лекция 3. Ортогональные проекции плоскости


Слайд 13
Текст слайда:


ПЛОСКОСТИ ЧАСТНОГО ПОЛОЖЕНИЯ 1. Плоскости уровня – параллельные плоскостям проекций

Горизонтальная плоскость уровня aII П1

Z

X

Y

Y

aП2

aП3

az

Y

Z

X

aП3

aП2

az

a










А1

В1

С1

А2

В2

С2

А1

С1

В1

А2

В2

С2


ΔАВС; IABCI=IA1B1C1I




В3 С3 А3

Лекция 3. Ортогональные проекции плоскости


aП1


Слайд 14
Текст слайда:


Z

X

Y

Y

bп1

bП3

by

Y

Z

X

bп1

bП3

by

by

Фронтальная плоскость уровня bI I П2









А1

В1

С1

С2

В2

А2

b

ΔАВС; IABCI=IA2B2C2I


А3≡С3

В3

Лекция 3. Ортогональные проекции плоскости






bП2


Слайд 15
Текст слайда:



Z

X

Y

Y

gП2

gп1

gx

Z

X

gп1

gП2

gx

g


Профильная плоскость уровня   П3

Y



Лекция 3. Ортогональные проекции плоскости

gП3


Слайд 16
Текст слайда:

Особенности чертежа плоскостей уровня

Фигуры принадлежащие плоскостям уровня проецируются в натуральную величину на параллельную плоскость проекций

На другие плоскости проекций фигуры принадлежащие плоскостям уровня проецируются в прямую линию

Лекция 3. Ортогональные проекции плоскости


Слайд 17
Текст слайда:

2. Проецирующие плоскости - перпендикулярные плоскостям проекций

Горизонтально проецирующая плоскость ┴П1

X

Y

Y

aП2

aП3

Z

X

aп1

aП2

ax





ax


Z

aп1

aП3

a




Y

ay




y

ay

ay


А1

В1

С1

А2

В2

С2



ΔАВС


Лекция 3. Ортогональные проекции плоскости


Слайд 18
Текст слайда:

Фронтально проецирующая плоскость  ┴ П2

Z

X

Y

Y

П2

п1

x

Y

Z

X

П2

z






П3

П1

П3

z




x





А2

В2

С2

А1

В1

С1


f


ΔАВС  

Лекция 3. Ортогональные проекции плоскости



А3

В3

С3


Слайд 19
Текст слайда:

Профильно проецирующая плоскость  ┴ П3

Z

X

Y

Y

П2

п1

Y

Z

X

п1

П2

П3



П3










z

y

z

y

y

А3≡С3

В3



φ

ψ

ΔАВС  


Лекция 3. Ортогональные проекции плоскости


В2

А2

С2

В1

С1

А1


Слайд 20
Текст слайда:

Фигуры принадлежащие проецирующим плоскостям проецируются в прямую линию на перпендикулярную плоскость проекций (вырожденная проекция)

Угол между заданной плоскостью и плоскостью проекций равен углу наклона между вырожденной проекцией и осями координат

Особенности чертежа проецирующих плоскостей

Лекция 3. Ортогональные проекции плоскости


Слайд 21
Текст слайда:

Лекция 3. Ортогональные проекции плоскости

Ортогональные проекции плоскости общего положения


Слайд 22
Текст слайда:

Плоскость общего положения не параллельна и не перпендикулярна ни одной из плоскостей проекций

Y


Z

X

aп1

aП3

aП2

ax

ay

az




a

Лекция 3. Ортогональные проекции плоскости


Слайд 23
Текст слайда:

Принадлежность точки и
прямой линии плоскости

Точка принадлежит плоскости, если она принадлежит прямой в этой плоскости

Прямая принадлежит плоскости если она проходит:
а) через две точки этой плоскости;
б) через точку плоскости параллельно какой-либо прямой в этой плоскости

Лекция 3. Ортогональные проекции плоскости


Слайд 24
Текст слайда:

Принадлежит ли точка А плоскости a?



А2

А1

aп2

aП1

ax

Y

Z

X

точка А плоскости a
не принадлежит, т.к. точка не принадлежит прямой, лежащей в этой плоскости

Лекция 3. Ортогональные проекции плоскости


Слайд 25
Текст слайда:

ОСОБЫЕ ЛИНИИ ПЛОСКОСТИ

Линии уровня плоскости – линии параллельные плоскостям проекций и принадлежащие данной плоскости;

Линии наибольшего наклона плоскости (ЛНН) – определяют угол наклона данной плоскости к одной из плоскостей проекций.

ЛНН перпендикулярны линиям уровня:
горизонтали на плоскости П1;
фронтали на плоскости П2.

Лекция 3. Ортогональные проекции плоскости


Слайд 26
Текст слайда:


Z

X

aп1

aП3

aП2

ax

ay

az




a

ЛИНИИ УРОВНЯ ПЛОСКОСТИ
Горизонталь плоскости

Y

Горизонталь h принадлежит плоскости a, параллельна горизонтальному следу плоскости a и всегда параллельна горизонтальной плоскости проекций

Лекция 3. Ортогональные проекции плоскости


Слайд 27
Текст слайда:

AН(h) горизонталь плоскости aвсегда параллельна горизонтальному следу плоскости – п1

Горизонталь плоскости , заданной следами

aп2

aП1

Y

Z

X

ax


А2

А1

h2

h1

Н2

Н1




ay

az

Лекция 3. Ортогональные проекции плоскости


Слайд 28
Текст слайда:



AH(h)– горизонталь ΔАВС

Горизонталь плоскости треугольника









А2

В2

С2

H2

В1

С1

А1

H1

X

Лекция 3. Ортогональные проекции плоскости


Слайд 29
Текст слайда:

АF (f)- фронталь плоскости a всегда параллельна фронтальному следу плоскости αП2

Фронталь плоскости , заданной следами

aп2

aП1

Y

Z

ax

А2

А1

f2

f1

F2

F1



X


az

ay


Лекция 3. Ортогональные проекции плоскости


Слайд 30
Текст слайда:











А2

F2

В2

С2

В1

С1

А1

F1

Фронталь плоскости треугольника

СF (f) фронталь плоскости ΔАВС

X

Лекция 3. Ортогональные проекции плоскости


Слайд 31
Текст слайда:


Z

X

aп1

aП3

aП2

ax

ay

az




a

Линия наибольшего наклона плоскости к плоскостям проекций (линия ската)

Линия наибольшего наклона плоскости α к горизонтальной плос-кости проекций - линия ската плоскости α.
2. Линия ската ┴ αп1
3. Линия ската ┴ h1

h

Y



Линия ската

Лекция 3. Ортогональные проекции плоскости


Слайд 32
Текст слайда:

А1D1 ┴ А1H1 II П1
А1D1 ┴ αп1

Линия ската на горизонтальной плоскости проекций перпендикулярна горизонтали плоскости

aп2

aП1

Y

X

ax

А2

А1

h2

h1

H2

H1



ay

az




D1

D2

Лекция 3. Ортогональные проекции плоскости



Слайд 33
Текст слайда:

В1D1 ┴ А1H1
ВD – линия ската треугольника









А2

В2

С2

H2

В1

А1

H1

X

Линия ската треугольника из наивысшей точки (В) перпендикулярна горизонтали

D1

D2





С1

Лекция 3. Ортогональные проекции плоскости


Слайд 34
Текст слайда:


Z

X

aп1

aП3

aП2

ax

ay

az




a

Линия наибольшего наклона плоскости α к фронтальной плоскости проекций перпендикулярна фронтали

ЛНН к П2 ┴ αп2
ЛНН к П2 ┴ f II П2

Y

f

Лекция 3. Ортогональные проекции плоскости


Слайд 35
Текст слайда:

АЕ – ЛНН к П2
A2Е2 ┴ A2F2 П2
A2Е2 ┴ п2

aп2

aП1

z

ax

А2

A1

f2

f1

F2

F1

X


az

ay


Е1

Е2





Линия наибольшего наклона плоскости α к фронтальной плоскости проекций перпендикулярна фронтальному следу

Лекция 3. Ортогональные проекции плоскости


Слайд 36
Текст слайда:










А2

F2

В2

А1

F1

Линия наибольшего наклона (линия ската)
плоскости ΔАВС к фронтальной плоскости проекций перпендикулярна фронтали

BE – ЛНН к П2
В2E2 ┴ C2F2П2



X

Е2

Е1


В1

С1

С2

Лекция 3. Ортогональные проекции плоскости


Слайд 37
Текст слайда:

Нормаль плоскости

Нормаль плоскости n – линия
перпендикулярная к заданной плоскости


Z

X

aп1

aП3

aП2

ax

ay

az




Y

a

n

Лекция 3. Ортогональные проекции плоскости


Слайд 38
Текст слайда:

Проекции нормали перпендикулярны про-екциям линий уровня плоскости a:
горизонтали на П1
фронтали на П2
Проекции нормали пер-пендикулярны следам плоскости a:
n1 ┴ aп1
n2 ┴ aп2

aП1

Y

ax

А2

А1

n2

n1

X

az

ay



aп2

Лекция 3. Ортогональные проекции плоскости


Слайд 39
Текст слайда:




А2

В2

А1

X


В1

С1

С2





Через точку D провести перпендикуляр к плоскости треугольника АВС
А(80,20,30)
В(40,60,60)
С(0,40,0)
D(10,0,70)

D2

D1


1.Проведем горизонталь AH. На горизонтальной плоскости проекции нор-маль перпендикулярна горизонтали D1N1┴ А1Н1
Точку N выберем произ-вольно
2. Проведем фронталь CF
На фронтальной плос-кости проекции нормаль перпендикулярна фрон-тали D2N2 ┴C2F2



H1

H2



F1

F2

НОРМАЛЬ ПЛОСКОСТИ ТРЕУГОЛЬНИКА

N1

N2

Лекция 3. Ортогональные проекции плоскости


Слайд 40
Текст слайда:

Относительное положение прямой и плоскости Относительное положение плоскостей

Лекция 3. Ортогональные проекции плоскости


Слайд 41
Текст слайда:

ПАРАЛЛЕЛЬНЫЕ ПРЯМАЯ
И ПЛОСКОСТЬ

Параллельные плоскости

Лекция 3. Ортогональные проекции плоскости


Слайд 42
Текст слайда:

Прямая параллельна плоскости, если она параллельна любой прямой, лежащей в этой плоскости

2. Плоскости параллельны, если две пересекающиеся прямые одной плоскости, параллельны двум пересекающимся прямым другой плоскости

Лекция 3. Ортогональные проекции плоскости


Слайд 43
Текст слайда:

Через точку D провести прямую a параллельную Δ АВС и плоскость α(a∩b) параллельную Δ АВС

Лекция 3. Ортогональные проекции плоскости


Слайд 44
Текст слайда:

X

Y

Z







A2

B2

A1

C2

C1

B1

a1

a2



D2

D1

a2 II B2C2
a1 II B1C1


a II BC
a II ΔABC

b1

b2

 (a b)


a II BC
b II AC


a II ΔABC

Лекция 3. Ортогональные проекции плоскости


Слайд 45
Текст слайда:

Построить следы плоскости β, параллельной плоскости α и проходящей через точку А




αп2

αп1

А2

А1

Через точку А проведем горизонталь параллельно горизонтальному следу плоскости α

F1

F2

βп2

βп1

Лекция 3. Ортогональные проекции плоскости

αх

βх


Слайд 46
Текст слайда:

Прямая перпендикулярная плоскости, перпендикулярные плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим данной плоскости
В соответствии с теоремой о проекциях прямого угла прямая перпендикулярна плоскости, если она перпендикулярна одноименным проекциям горизонтали и фронтали плоскости
· Две плоскости перпендикулярны, если одна плоскость проходит через перпендикуляр к другой

Лекция 3. Ортогональные проекции плоскости


Слайд 47
Текст слайда:

Задача

Построить проекции нормали плоскости a, проходящей через точку С, принадлежащей данной плоскости

Лекция 3. Ортогональные проекции плоскости


Слайд 48
Текст слайда:


C ∈ α

αП1

O

X

αп2

С2


С1

А2

А1

D1

D2

n1

n2

Лекция 3. Ортогональные проекции плоскости

αх


Слайд 49
Текст слайда:

Через точку D провести перпендикуляр к плоскости Δ АВС и плоскость α (n∩a) перпендикулярную Δ АВС
А(80,10,30)
В(40,60,50)
С(10,45,0)
D(50,55,5)

Лекция 3. Ортогональные проекции плоскости


Слайд 50
Текст слайда:


n1⊥А1Н1II П1
n2 ⊥ С2F2II П2
а – произвольная прямая







А2

F2

В2

А1

F1


X

H2

H1


С1

С2




n2

n1

В1



D2

D1

a2

a1



Лекция 3. Ортогональные проекции плоскости


Слайд 51
Текст слайда:

ПЕРЕСЕКАЮЩИЕСЯ ПРЯМАЯ И ПЛОСКОСТЬ

ПРЯМАЯ И ПЛОСКОСТЬ ПЕРЕСЕКАЮТСЯ, ЕСЛИ У НИХ ЕСТЬ ОДНА ОБЩАЯ ТОЧКА

Лекция 3. Ортогональные проекции плоскости


Слайд 52
Текст слайда:


Точка пересечения прямой и плоскости частного положения определяется на пересечении следа плоскости и проекции прямой

X

O



a1

а2

п1

п2

К1

К2

X

O

a1

а2

п1

п2

К1

К2




Лекция 3. Ортогональные проекции плоскости

х


Слайд 53
Текст слайда:

Пересечение прямой частного положения и плоскости общего положения



О

X

А2

В2

С2

А1

В1

С1


a1

a2

m2


К1

≡К2


Лекция 3. Ортогональные проекции плоскости


Слайд 54
Текст слайда:

Пересечение прямой общего положения и плоскости общего положения

СПОСОБ ВСПОМОГАТЕЛЬНЫХ СЕКУЩИХ ПЛОСКОСТЕЙ


Лекция 3. Ортогональные проекции плоскости


Слайд 55
Текст слайда:

Алгоритм способа плоскостей

Лекция 3. Ортогональные проекции плоскости

Прямую заключают в плоскость частного положения α ┴ П1

Определяют линию пересечения заданной плоскости и вспомогательной плоскости α

Определяют точку пересечения заданной прямой и построенной линии пересечения

Это искомая точка пересечения заданной плоскости и прямой а

Определяют видимость заданной прямой


Слайд 56
Текст слайда:



αп1

C1

Е2

A2

С2

B2

A1

B1

D1

E1

a1

a2

D2

αп2



К2

К1





Видимость прямой определяют по конкурирующим точкам


Лекция 3. Ортогональные проекции плоскости




Слайд 57
Текст слайда:

Видимость прямых определяют по конкурирующим точкам -
которые принадлежат скрещивающимся прямым.
Конкурирующие точки располагаются дальше или ближе относительно плоскости П2 (точки А и В),
выше или ниже относительно плоскости П1 (точки C и D).

На горизонтальной плоскости проекций видима точка С имеющая большую координату Z,
на фронтальной плоскости проекций видима точка А имеющая большую координату Y.

А1

С2

D2

D1Ξ C1

В1

А2 Ξ В2

X







Лекция 3. Ортогональные проекции плоскости


Слайд 58
Текст слайда:

Определение видимости прямой



Е2

F11

E1

F2


Е21

F1




C1

A2

С2

B2

A1

B1





К1

К2

Лекция 3. Ортогональные проекции плоскости


Слайд 59
Текст слайда:

1. Плоскости пересекаются, если у них есть общие точки

2. Плоскости пересекаются по прямой линии, которая проходит через две общие точки плоскостей

Лекция 3. Ортогональные проекции плоскости


Слайд 60
Текст слайда:

Линия пересечения фронтально-проецирующей плоскости и плоскости общего положения определя-ется по точкам пересечения сторон треугольника ΔАВС и фронтального следа плоскости α

X

O



К2

F2

F1

К1

A2

B2

C2

B1

A1

C1

αп1

αп2





Лекция 3. Ортогональные проекции плоскости


Слайд 61
Текст слайда:

Список рекомендованной литературы

Бударин О. С. Начертательная геометрия. Краткий курс: учеб. пособие для студентов вузов, обучающихся по направлениям в обл. техники и технологий / О. С. Бударин. - 2-е изд., испр. - Санкт-Петербург ; Москва ; Краснодар: Лань, 2009. - 368 с.: ил
Королев Ю. И. Начертательная геометрия: учеб. для вузов инженер.-техн. специальностей / Ю. И. Королев. - 2-е изд. - Москва ; Санкт-Петербург ; Нижний Новгород [и др.]: Питер, 2010. - 256 с.: ил
Чекмарев А. А. Начертательная геометрия и черчение: учеб. для студентов вузов, обучающихся по техн. специальностям / А. А. Чекмарев. - 3-е изд., перераб. и доп. - Москва: Юрайт, 2011. - 471 с.: ил

Лекция 3. Ортогональные проекции плоскости


Слайд 62
Текст слайда:

Благодарю за внимание

Лекция 3. Ортогональные проекции плоскости


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика