Quantum computers, quantum computations презентация

Содержание

Take-home message The quest for a quantum computer reminds me of the endless quests for WIMPs, strings, sparticles, magnetic monopoles, etc. Succeed they or not, they bring to development of new

Слайд 1Quantum computers, quantum computations
H. Gomonay
National Technical University of Ukraine
JGU, Mainz, Germany


Слайд 2Take-home message
The quest for a quantum computer reminds me of the

endless quests for WIMPs, strings, sparticles, magnetic monopoles, etc. Succeed they or not, they bring to development of new knowledges and technologies, push the most talented people into science and keep fun from research. Same as it ever was.

Слайд 3Motivation
Microprocessor 80486dx2
Electronic lamp
Meters
Nanometers
Moore’s law
40 years


Слайд 4Outline
History
Principles of quantum computation
Di Vincenzo criteria
Superconducting qubit
Some algorithms
Architecture
Challenges and problems


Слайд 5History in facts
1982 – R. Feynman predicts possibility of quantum computations
1935

– A. Einstein doubts in adequacy of quantum mechanics & introduces entangled states

2007 – D-Wave Systems presents 16 qubit quantum processor Orion


Слайд 6
2012 – S. Haroche & D. J. Wineland winn Nobel prize

for for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

2015 – Google tests the D-Wave 2X quantum annealer, ~1000 qb


Слайд 7History in diagrams
Classical vs quantum: speed up


Слайд 8What is beyond?
Down to small size = forward to quantum physics



Слайд 9Quantum Mechanics: Quantum Information


Слайд 10What is all about or new applications of quantum physics
“Hacking” crypto
Keeping

secrets
Data search speed up
Bioinformatics
Outer space opening
Fundamental problems

Factorization of 256-digit number:
Classic – 2N ≈1070 years
Quantum – N2 ~ 10 seconds


Слайд 11What is QC?
QC is the physical device that utilizes quantum properties

for information processing

D-Wave


Слайд 12



Classical ≠ Quantum

Hardware
Software
Boolean logic
Quantum logic
Classical
Quantum




(Principle of
excluded middle)
(Superposition & hidden symmetry)


Слайд 13Algorithm complexity
Easy

Hard
Input
Classic C
Quantum C


Hard

 


Слайд 14Qubit = Quantum bit
Bit
Qubit


Слайд 15Entangled states (EPR)


Слайд 16Interference – Schrödinger's Cat
 


Слайд 17Quantum parallelelism


Слайд 18Parallel quantum algorithm


Слайд 19Universal gate set
Operation
Gates:
NOT

Hadamar

XOR


Слайд 20Principles of quantum computation
Computation: unitary evolution
Readout: measurement
Avoiding decoherence


Слайд 21Di Vincenzo criteria
Selectivity (addressing each qubit)
High sensitivity = Good control
Large decoherence

time (τdecoh/ τgate >104)
Readout ⇒ Measurability
Scalability (>100 qubits)

Слайд 22Quantum computer by Cirac & Zoller (1995)


Слайд 23Ions in trap


Слайд 24Qubit: micro or macro?
Measurement duration:
Limitations:
Energy splitting:
Qubit = 1 electron

spin:
Measured
Min splitting
Min field
Impossible! We need macrospin!

k~10-3 – 10-7

~10 4 T


Слайд 25Superconductors: macroatoms
Qubit: charge or phase
Control: magnetic flux
Readout: SQUID, SET
T=10 mK
1 qubit

gate — ns
Qubit size 1 mcm

Josephson junction


Слайд 26Superconducting qubit: overcoming decoherence
Shnyrkov et al, 2007
τdecoh→ s, T → 1

K

(Shnyrkov, Mooji, D-wave Systems)


Слайд 27Flux qubit: theory


Слайд 28… & experiment

qubit
gate


Слайд 29V-I SQUID (V.Shnyrkov, G. Tsoi, 1990)


quantum
classic


Слайд 30
ScS-контакт, m= 26, C= 8 pF, βL= 3,83
Quantum coherence


Слайд 31
Single-qubit gate


Слайд 32
Experimental results for the charge-phase qubit placed in the region of

the maximum electric field at continuous microwave irradiation with ω0=7.27 GHz. Set of the curves of the voltage-current phase shift αT (Φe/Φ0) in the tank circuit. (V. Shnyrkov, D. Born, A. Soroka, W. Krech 2003)

Rabi oscillations


Слайд 33
2-qubit gate (DiVincenzo et al, IBM qubit)


Слайд 34Find the period: Shor’s algorithm


Слайд 35Hidden symmetry
ay=0 - amplification; ay=1 - depression


Слайд 36Classic algorithm : 2n =N
Quantum algorithm: 2n/2 = √N
Unsorted database


Merlin

Database search


Слайд 37Grover’ algorithm
Input

Flip (Merlin)

Mirroring
 
 


Слайд 38Grover’ algorithm: experiment


Слайд 394-level system
QIR=Quantum Intermediate Representation
QASM=Quantum Assembly Language
QPOL=Quantum Physical Operations Language
QCC=Quantum Computer Compiler
Architecture


Слайд 40Quantum computer: challenges
Decoherence (state instability)
Scaling (few number of qubits)
Input-output control
Extreme

conditions (T=10 mK, …)
New math algorithms development
Consumer friendly implementation
Weak measurement

Слайд 41

Quantum abyss

# кубитов
~5

1000
>109
Шум ↓
Технологии ↑
Алгоритмы ↑
Ошибки ↓


?


Слайд 42When, Where, Who & hoW?
2 qb — 1999, 7 qb —

2001, 16 qb — 2007,
NP — 2012,1000 qb —2015, on-table -- 20xx?
~ 1000 experimental groups over the world
Physics, math, computer science, engineering?
Semi- or super-conductors or?

Слайд 43Alumni
Vadym Kliuchnikov

Post doc researcher @ Microsoft Research
http://research.microsoft.com/en-us/people/vadym/

Sergii Strelchuk

Junior Research Fellow

@ Centre for Quantum Information and Foundations, UC
http://www.qi.damtp.cam.ac.uk/node/72

Слайд 44QUANTUM COMPUTING
JOIN THE TEAM!


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика