Потенциальные поля простой трёхмерной фрактальной модели среды (губка Менгера) презентация

Содержание

Фрактальный объект обладает некоторой сложной, приближённо, самоподобной структурой, проявляющейся на различных, как правило кратных, уровнях масштабирования. Фракталы используются для описания геометрии природных объектов сложной самоподобной формы (Мандельброт, 2002), анализа структуры

Слайд 1ПОТЕНЦИАЛЬНЫЕ ПОЛЯ ПРОСТОЙ ТРЁХМЕРНОЙ ФРАКТАЛЬНОЙ МОДЕЛИ СРЕДЫ (ГУБКА МЕНГЕРА)
Потенциальные поля фрактальной

модели среды

Глазнев В.Н., Ли А.Т., Кочетов М.В.

Воронежский государственный университет, Воронеж

Глазнев В.Н.

Слайд


Слайд 2Фрактальный объект обладает некоторой сложной, приближённо, самоподобной структурой, проявляющейся на различных,

как правило кратных, уровнях масштабирования.

Фракталы используются для описания геометрии природных объектов сложной самоподобной формы (Мандельброт, 2002), анализа структуры рудных полей, геофизических аномалий и результатов петрофизических измерений (Keilis-Borok et.al., 1996, 2001, 2004; Горяинов, Иванюк, 1998, 2001; Galitchanina et. al., 1995; Козлов и др., 2006).

Потенциальные поля фрактальной модели среды

Глазнев В.Н.

Слайд


Слайд 3В плане применения методов фрактальной геометрии к анализу потенциальных полей, интерес

представляют работы Ю.И.Блоха с соавторами (Бабаянц и др., 2005; Блох, 2007), в которых исследовалась простейшая 2D модель фрактальной среды - «ковер Серпинского», обладающая нецелой Хаусдорфовой размерностью

Потенциальные поля фрактальной модели среды

Глазнев В.Н.

Слайд

Авторами указанных работ было показано, что магнитное поле такой структуры, также представляет некоторую фрактальную структуру.


Слайд 4Задача:
Численное моделирование потенциальных полей от 3D фрактальных моделей среды, примером

которых является «губка Менгера» – трёхмерный куб, каждая грань которого выглядит как «ковёр Серпинского».

Потенциальные поля фрактальной модели среды

Глазнев В.Н.

Слайд


Слайд 5Губка Менгера обладает масштабным самоподобием и
характеризуется нецелой Хаусдорфовой размерностью
Потенциальные поля

фрактальной модели среды

Глазнев В.Н.

Слайд

Объём куба Менгера (для итерации N)

В пределе (для N→∞) куб Менгера имеет нулевой объём и бесконечную площадь граней.


Слайд 6Численное моделирование:
исходный куб размером 1000 х 1000 х1000 м с избыточной плотность 1000

кг/м3;
формирование модели куба Менгера для текущей итерации;
вычисление полей Vz и Vzz с заданной точностью на плоскости над верхней гранью куба Менгера.

Проблемы моделирования: сложность модели (число непустых элементов куба Менгера) и линейные размеры элемента изменяются как

Потенциальные поля фрактальной модели среды

Глазнев В.Н.

Слайд


Слайд 7Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Поля от исходного куба

(N=0) для уровня 100 м над верхней гранью модели (размер области моделирования - 2000 х 2000 м, шаг вычисления полей - 10 х 10 м)

Слайд 8Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Поля от куба Менгера

(N=5) для уровня 100 м над верхней гранью модели (размер области моделирования полей - 2000 х 2000 м, шаг вычисления полей - 10 х 10 м)

Слайд 9Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Поле Vz от куба

Менгера (N=5) на центральном профиле для различных высот над верхней гранью модели

Слайд 10Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Поле Vzz от куба

Менгера (N=5) на центральном профиле для различных высот над верхней гранью модели

Слайд 11Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Амплитудный спектр поля Vz

от куба Менгера (N=5).

Порог ошибок округления данных

где q – значение младшего значащего разряда (q=0.01 мГал).


Слайд 12Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Амплитудный спектр поля Vzz

от куба Менгера (N=5).

Порог ошибок округления данных

где q – значение младшего значащего разряда (q=0.1 Этвеш).


Слайд 13Для спектра мощности самоподобного (фрактального) процесса известно
Потенциальные поля фрактальной модели среды
Глазнев

В.Н.

Слайд

Соотношение между спектрами плотности в слое Sσ и поля SF на уровне z

где SF – спектр оператора Пуассона


Слайд 14Вывод:

Исследование фрактальных свойств потенциальных полей требует чёткого определения реальной точности

представления данных, а равно и результатов их аналитических преобразований.
Для более глубокого анализа данных потенциальных полей требуются более высокие точности их практического определения и, вероятно, переход к измерениям высших производных полей.

Потенциальные поля фрактальной модели среды

Глазнев В.Н.

Слайд


Слайд 15Благодарю за внимание
Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд


Слайд 16Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Поле Vz от куба

Менгера (N=0) на центральном профиле для различных высот над верхней гранью модели

Слайд 17Потенциальные поля фрактальной модели среды
Глазнев В.Н.
Слайд
Поле Vzz от куба

Менгера (N=0) на центральном профиле для различных высот над верхней гранью модели

Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика