Слайд 1
Механічні властивості твердих тіл, рідин та газів
Види деформацій, пружність
та повзучість. Закон Гука
Ламінарна та турбулентна течії. Циркуляція
Сили в’язкого тертя
Рівняння неперервності та Бернуллі для стаціонарної течії ідеальної рідини. Течія рідин та газів по трубах
Рух твердих тіл у рідинах та газах. Підіймальна сила крила літака
Лекція № 6.
Елементи механіки суцільних середовищ
Слайд 2Механічні властивості твердих тіл, рідин та газів
Окрім механіки матеріальної точки та
механіки твердого тіла існує ще і механіка суцільних середовищ.
Суцільним вважають середовище, що неперервно розповсюджується у просторі (тобто не враховується його дискретна будова) і характеризується пружними властивостями.
Механіка суцільних середовищ – розділ механіки, присвячений вивченню руху і рівноваги деформованих твердих тіл, рідин, газів і плазми.
Слайд 3Механіку суцільних середовищ поділяють на:
1) механіку деформованого твердого тіла, вклю-чає в
себе:
теорію пружності,
теорію пластичності,
механіку руйнування;
2) механіку рідин та газів.
Слайд 4Механіка деформованого твердого тіла – розробляє та вивчає моделі деформованих середовищ,
створює методи розв'язання задач деформування і руйнування твердих тіл під дією силових навантажень.
Слайд 5Теорія пружності – описує матеріали, які відновлюють свою форму після припинення
силового впливу на них.
Слайд 6Теорія пластичності – описує матеріали (тіла) що набувають незворотних деформацій під
силовим впливом.
Слайд 7Механіка руйнування – описує закономірнос-ті зародження і розвитку неоднорідностей і дефектів
структури матеріалу (тріщин, дислокацій, пор, включень тощо) при навантаженнях.
Слайд 8Механіка рідин та газів – вивчає рівновагу і рух рідких і
газоподібних середовищ, встановлює закони розподілу швидкостей і тисків під час руху рідини, а також вивчає взаємодію рідин та газів між собою і з твердими тілами, розміщеними в них.
Слайд 92. Види деформацій, пружність та повзучість. Закон Гука
Деформація (від лат. deformatio
– “спотворення”) – зміна розмірів і форми твердого тіла під дією зовнішніх сил (навантажень) або інших впливів (температури, електричних чи магнітних полів тощо).
Слайд 11Пружна (або оборотна) деформація – дефор-мація при якій після припинення дії
навантаження тіло повністю відновлює свою початкову форму і розміри.
Пружні деформації спостерігаються у тому випадку, коли напруження, що зумовлює деформацію, не перевищує деяку, визначену для кожної речовини, межу – межу пружності.
Деякі речовини (мета-ли, каучук) можуть зазна-вати значної пружної деформації, в той час як у інших (кераміки, пресова-ні матеріали) навіть незначна деформація перестає бути пружною.
Слайд 12Пластична (або залишкова чи необоротна) деформація – деформація, яка не зникає
повністю після припинення дії навантаження, а отже форма твердого тіла не відновлюється (робота зовнішніх сил переходить у теплоту).
Природа пластичної деформації може бути різною в залежності від температури, тривалості дії навантаження або швидкості деформації.
Слайд 13Пластичність – здатність матеріалу незворотньо змінювати свою форму й розміри при
деформації.
Слайд 14Крихкість – відсутність або незначна пластичність матеріалів.
скло
Слайд 15Повзучість – явище зростання деформації твердого тіла з часом при сталому
навантаженні, із зростанням температури швидкість деформації збільшується.
Слайд 16На теорії пластичних деформацій засновані такі технологічні процеси обробки матеріалів, як
“обробка металів тиском” або холодна обробка металів, а саме: прокатка, пресування, штампу-вання, ковка тощо.
Слайд 17Діаграма розтягу
ОАВ – область пружних деформацій
т.В – межа пружності
ВС – область
пластич-них деформацій
т.С – межа пастичності
СД – область текучості
DЕ – область швидкого зростання видов-ження із збільшен-ням навантаження
т.Е – межа міцності
ЕК – область руйнуван-ня зразка
Слайд 18
За зміною форми розрізняють такі основні види деформацій:
Слайд 19Деформація розтягу
Випробують: троси, ціпки…
Слайд 20Деформація стиску
Випробують : колоны, стіни…
Слайд 21Деформація зсуву
Випробують: болти, заклепки…
Слайд 22Деформація кручення
Випробують: гайки, вали, осі…
Слайд 23Деформація згину
Випробують: мости, балки…
Слайд 24
Під час деформації тіла відбувається зміщення його частинок (атомів або молекул)
відносно положень рівноваги в інші положення. Цим зміщенням протидіють сили взаємодії між частинками, що діють між окремими частинами деформованого тіла і намагаються повернути тіло в стан рівноваги – внутрішні сили або внутрішнє напруження.
Слайд 25Внутрішнє (механічне) напруження фізична величина, що дорівнює відношенню результуючих пружних сил
до площі перерізу тіла:
Слайд 26Основним видом деформації є деформація розтягу або стиску, при якій тіло
зазнає зміни довжини.
Зміну довжини деформованого тіла називають абсолютною деформацією:
Слайд 27Оскільки абсолютна деформація не вказує, яку частину становить зміна довжини від
початкової, то мірою деформації тіла є його відносна деформація:
при розтягу ε > 0, а стиску – ε < 0.
Слайд 28Експериментально встановлено, що при невеликих послідовно зростаючих навантаженнях механічне напруження пропорційне
відносній деформації – закон Гука:
де Е – модуль пружності (або модуль Юнга якщо мова йде про розтяг або стиск), залежить від матеріалу стержня і його фізичного стану.
Слайд 29При деформаціях розтягу або стиску відбувається також зміна поперечних розмірів тіла,
яку характеризують відносним поперечним стиском або розтягом:
Слайд 30Відношення відносної поперечної деформації тіла до відносної повздовжньої деформації називають коефіцієнтом
Пуассона, який залежить тільки від матеріалу тіла і є однією із сталих, що характеризує пружні властивості тіла:
Слайд 31Числове значення коефіцієнта Пуассона лежить у межах: 0
що мають однакові механічні властивості за всіма напрямками 0,25 < μ ≤ 0,33, зокрема, для металів μ = 0,3; для гуми μ = 0,5; для пористих матеріалів (наприклад, коркової винної пробки) μ ≈ 0.
Але навіть незначного зменшення діаметру при видовженні пробки достатньо, щоб більш-менш легко вийняти її штопором із пляшки.
Слайд 323. Ламінарна та турбулентна течії
Рух рідин називають течією, а сукупність частинок
рідини, які рухаються – потоком.
Для графічного зображення руху рідини вводять поняття ліній течії – ліній, дотичні до яких у кожній точці співпадають з вектором швидкості потоку.
Лінії проводять таким чином, щоб густина їх була пропорційною до швидкості потоку.
Частину рідини, яка обмежена лініями течії називають трубкою потоку.
Слайд 33Ламінарною течією називають течію в якій лінії потоку не перетинаються, турбулентною
течією називають течію в якій лінії потоку перетинаються, тобто є завихрення.
Слайд 35Число Рейнольдса – безрозмірна фізична величина, що визначає характер течії, визначається
відношенням кінетичної енергії руху рідини до втрат енергії, зумовлених роботою сил в'язкості. Визначає відносну роль інерції і в'язкості рідини під час течії:
де ν=η/ρ – кінематична в'язкість,
ρ – густина рідини,
<υ> – середня по перерізу труби швидкість рідини,
d – характерний лінійний розмір, наприклад, діаметр труби
Слайд 36При малих значеннях числа Рейнольдса (Re≤1000) спостерігається ламінарна течія, перехід від
ламінарної течії до турбулентної здійснюється в області 1000≤Re≤2000, а при Re=2300 (для гладких труб) течія – турбулентна.
Якщо число Рейнольдса однакове, то режим течії різних рідин або газів в трубах різних перерізів буде однаковим.
Слайд 374. Сили в’язкого тертя
В’язкість (внутрішнє тертя) – явище переносу імпульсу, яке
полягає у властивості реальних рідин та газів чинити опір переміщенню однієї частини рідини (газу) відносно іншої.
Слайд 38Механізм виникнення в’язкості зумовлений переносом імпульсу ( ) направленого руху
від одного шару рідини чи газу до іншого.
При взаємному зміщенні одного шару речовини відносно іншого відстані між молекулами шарів збільшуються, тобто починають діяти сили взаємного притягання.
З боку більш швидкого шару починає діяти сила, що прискорює менш швидкий шар, а з боку повільних шарів рідини або газу діють сили, що гальмують рух швидких шарів.
В реальних рідинах і газах між молекулами існують сили взаємного притягання і відштов-хування.
Слайд 39Під час переміщення одних шарів реальної рідини (газу) відносно інших виникають
сили внутрішнього тертя, спрямовані вздовж дотичної до поверхні цих шарів, які визначають законом Ньютона для в’язких рідин:
де F – сила внутрішнього тертя;
− градієнт швидкості, який показує зміну величини швидкості потоку при переході від шару до шару у напрямку осі Оy, перпендикулярному до напрямку руху рідини (газу);
S – площа поверхні шарів;
η − коефіцієнт динамічної в’язкості рідини (газу), залежить від природи рідини (газу) та температури.
Слайд 405. Рівняння неперервності та Бернуллі для стаціонарної течії ідеальної рідини.
Течія
рідин та газів по трубах
Якщо потік рідини змінює площу свого перерізу (див. рис.), то за час Δt рідина у трубці площею перерізу S1 пройде шлях Δl1, а площею S2 – шлях Δl2.
Слайд 41Об’єми рідин ΔV1 і ΔV2 будуть дорівнювати відповідно:
ΔV1=
S1 Δl1 і ΔV2= S2 Δl2
Скоротивши значення часу отримаємо рівняння неперервності для стаціонарної течії ідеальної рідини:
S1υ1 =S2υ2.
або
ΔV1=S1υ1Δt і ΔV2=S2υ2Δt .
Оскільки рідини мало стисливі, то об’єми ΔV1 і ΔV2 будуть рівними ΔV1= ΔV2
або S1υ1Δt =S2υ2Δt .
Слайд 42При переході рідини з ділянки труби з більшим перерізом до ділянки
з меншим перерізом швидкість течії зростає, тобто рідина рухається із прискоренням. Отже, на рідину діє сила.
S1υ1 =S2υ2
У горизонтальній трубі ця сила може виникнути тільки через різницю тисків у широкій і вузькій ділянках труби. Тиск у широкій ділянці труби має бути більшим ніж на вузькій ділянці.
Слайд 43
З рівняння неперервності для стаціонарної течії ідеальної рідини випливає, що швидкість
потоку рідини обернено пропорційно залежить від площі його перерізу.
Цю залежність широко використовують для отримання сильного та далекобійного струменя рідини, наприклад, у брандспойтах для гасіння пожеж; у гідрорізаках для видобування, розрізування та обробки будівельних матеріалів; у системах поливу або пристроях для розпилення рідин (у зволожувачах повітря, розпилювачах фарб) тощо.
S1υ1 =S2υ2
Слайд 44Якщо ділянки труби розташовані на різних висотах, то прискорення рідини виникає
завдяки суспільній дії сили тиску та сили тяжіння.
Оскільки рідина є ідеальною, тобто вона тече по трубі без тертя, то до її течії можна застосувати закон збереження механічної енергії.
При переміщенні рідини сили тиску виконують роботу:
Слайд 45При стаціонарній течії зміни, що відбулися за час Δt у виділеній
частині рідини зводяться до переміщення маси рідини Δm з однієї частини труби перерізом S1 в іншу частину перерізом S2 (заштриховані об’єми на рис.). Закон збереження механічної енергії для цієї маси має вигляд:
де E1 і E2 – повні механічні енергії рідини масою Δm у полі тяжіння Землі:
Слайд 46
Оскільки робота сил тиску призводить до зміни повної механічної енергії,
то із попередніх рівнянь можна отримати співвідношення, яке називають рівнянням Бернуллі:
де ρ – густина рідини,
υ1 і υ1 –швидкості у різних точках потоку,
h1 і h2 – висоти, на яких знаходяться точки
– динамічний тиск – є кінетичною енергією одиниці об’єму рідини,
ρgh – гідростатичний тиск – є потенціальною енергією одиничного об’єму рідини в полі сили тяжіння Землі,
p – статичний тиск – є роботою сил тиску, що здійснюється над одиничним об’ємом рідини.
Слайд 47З рівняння Бернуллі
випливає що тиск у рідині, яка тече по
горизонтальній трубі змінного перерізу, більше в тих місцях течії, в яких швидкість її руху менше, і навпаки, тиск менше в тих місцях, у яких швидкість більше.
Слайд 486. Рух твердих тіл у рідинах та газах. Підіймальна сила крила
літака
Під час руху тіла у рідині або газі, на нього з боку середовища діє сила лобового опору – сила зумовлена в’язкістю рідини, а також турбулентністю позаду тіла (при великих швидкостях).
Слайд 49Якщо сферичне радіусом r тіло рухається у ламінарному потоці рідини або
газу і сила в’язкого тертя прямо пропор-ційна його швидкості, то силу в’язкого тертя визна-чають формулою Стокса:
Слайд 50
Для тіла сферичної форми силу лобового опору визна-чають за формулою:
де Cx
– коефіцієнт лобового опору для тіла даної форми;
S – площа поперечного перерізу тіла.
При обтіканні такого тіла потік добре замикається позаду нього, заважаючи, тим самим, падінню тиску за тілом.
При великих швидкостях руху тіл у потоці рідини або газу, позаду тіла, відбувається відрив ліній течії, виникають вихрі, що призводить до інтенсивних турбулентних рухів.
Слайд 51Розглянемо приклад застосування рівняння Бернуллі для визначення підйомної сили крила літака.
На рис. показано потік повітря навколо крила літака. Запишемо рівняння Бернуллі для нижньої і верхньої точок крила 1 і 2:
Так як (товщина крила невелика), то рівняння набуває вигляду:
і результуюча сила, яка діє на крило, буде направлена вгору. Цю силу називають підйомною силою.
Слайд 53
Механічні властивості твердих тіл, рідин та газів
Види деформацій, пружність
та повзучість. Закон Гука
Ламінарна та турбулентна течії. Циркуляція
Сили в’язкого тертя
Рівняння неперервності та Бернуллі для стаціонарної течії ідеальної рідини. Течія рідин та газів по трубах
Рух твердих тіл у рідинах та газах. Підіймальна сила крила літака
Лекція № 6.
Елементи механіки суцільних середовищ