Динамика колебаний. (Раздел 2. Тема 8) презентация

Тема 8. Динамика колебаний 1. Дифференциальное уравнение колебаний. Математический и физический маятники. 2. Свободные затухающие колебания. 3. Вынужденные колебания. Резонанс.

Слайд 1Раздел 2: Колебания и волны
Тема8. Динамика колебаний


Слайд 2Тема 8. Динамика колебаний
1. Дифференциальное уравнение колебаний. Математический и физический маятники.
2.

Свободные затухающие колебания.
3. Вынужденные колебания. Резонанс.

Слайд 31 учебный вопрос: Уравнение гармонического осциллятора.
(1)


Слайд 4Математический маятник
Математическим маятником называют идеализированную систему, состоящую из невесомой и нерастяжимой

нити, на которой подвешено тело с сосредоточенной в одной точке массой, совершающее колебательное движение под действием силы тяжести.





Слайд 5


сравниваем с


Решение:
Период колебаний математического маятника зависит только от ускорения свободного

падения и от длины маятника и не зависит от его массы.

(2)

(3)

(4)


Слайд 6Физическим маятником называется любое твердое тело, способное под действием силы тяжести

совершать колебания вокруг неподвижной оси, не совпадающей с его центром инерции.

Физический маятник

По аналогии с математическим маятником:


В случае малых колебаний




(5)


Слайд 7Решение дифференциального уравнения колебаний физического маятника (5) имеет вид


(6)
Сравним физический маятник

с математическим
маятником




Слайд 8Приведенной длиной физического маятника называется длина такого математического маятника, период колебаний

которого совпадает с периодом колебаний данного физического маятника.




Точка О′ на прямой, соединяющей точку подвеса с центром инерции, лежащая на расстоянии приведенной длины от оси вращения, называется центром качания физического маятника.

(7)


Слайд 92 учебный вопрос: Свободные затухающие колебания

r − коэффициент сопротивления среды
Уравнение

второго закона Ньютона:












ДУ затухающих колебаний

(8)


Слайд 10β - коэф.затухания; ω0 - частота собственных колебаний без трения.
-

ДУ затухающих колебаний


Решение:

(9)


Слайд 11Характеристики затухания системы
2. Коэффициент затухания β

1. Время релаксации (времени затухания) τ

- время, за которое амплитуда уменьшается в е = 2,72 раз.


3. Декремент затухания


4. Логарифмический декремент затухания




Слайд 125. Добротность колебательной системы - число полных колебаний, совершаемых системой за

время затухания τ, умноженное на π:



Энергетический смысл добротности:

Добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.


Слайд 13Апериодический процесс


Слайд 143 учебный вопрос: Вынужденные колебания. Резонанс.
Пусть колебательная система подвергается действию внешней

вынуждающей силы:

Второй закон Ньютона:



(10)


Слайд 15Решение:



(11)


Слайд 16- резонанс
резонансная кривая



Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика