Risk and Return презентация

Содержание

Topics Covered Markowitz Portfolio Theory Risk and Return Relationship Testing the CAPM CAPM Alternatives

Слайд 1

Principles of Corporate Finance

Seventh Edition
Richard A. Brealey
Stewart C. Myers
Slides by
Matthew

Will

Chapter 8

McGraw Hill/Irwin

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved

Risk and Return


Слайд 2Topics Covered
Markowitz Portfolio Theory
Risk and Return Relationship
Testing the CAPM
CAPM Alternatives


Слайд 3Markowitz Portfolio Theory
Combining stocks into portfolios can reduce standard deviation, below

the level obtained from a simple weighted average calculation.
Correlation coefficients make this possible.
The various weighted combinations of stocks that create this standard deviations constitute the set of efficient portfolios.

Слайд 4Markowitz Portfolio Theory
Price changes vs. Normal distribution
Microsoft - Daily % change

1990-2001

Proportion of Days

Daily % Change


Слайд 5Markowitz Portfolio Theory
Standard Deviation VS. Expected Return
Investment A
% probability
%

return

Слайд 6Markowitz Portfolio Theory
Standard Deviation VS. Expected Return
Investment B
% probability
%

return

Слайд 7Markowitz Portfolio Theory
Standard Deviation VS. Expected Return
Investment C
% probability
%

return

Слайд 8Markowitz Portfolio Theory
Standard Deviation VS. Expected Return
Investment D
% probability
%

return

Слайд 9Markowitz Portfolio Theory

Coca Cola
Reebok
Standard Deviation
Expected Return (%)
35% in Reebok


Expected Returns and Standard Deviations vary given different weighted combinations of the stocks

Слайд 10Efficient Frontier
Standard Deviation
Expected Return (%)
Each half egg shell represents the possible

weighted combinations for two stocks.
The composite of all stock sets constitutes the efficient frontier

Слайд 11Efficient Frontier


Standard Deviation
Expected Return (%)
Lending or Borrowing at the risk free

rate (rf) allows us to exist outside the efficient frontier.

rf

Lending Borrowing

T

S


Слайд 12Efficient Frontier
Example

Correlation Coefficient = .4
Stocks σ % of Portfolio Avg Return
ABC Corp 28 60% 15%
Big Corp 42 40% 21%


Standard Deviation = weighted avg = 33.6
Standard Deviation = Portfolio = 28.1
Return = weighted avg = Portfolio = 17.4%


Слайд 13Efficient Frontier
Example

Correlation Coefficient = .4
Stocks σ % of Portfolio Avg Return
ABC Corp 28 60% 15%
Big Corp 42 40% 21%


Standard Deviation = weighted avg = 33.6
Standard Deviation = Portfolio = 28.1
Return = weighted avg = Portfolio = 17.4%

Let’s Add stock New Corp to the portfolio

Слайд 14Efficient Frontier
Example

Correlation Coefficient = .3
Stocks σ % of Portfolio Avg Return
Portfolio 28.1 50% 17.4%
New Corp 30 50% 19%

NEW Standard Deviation = weighted avg = 31.80
NEW Standard Deviation = Portfolio = 23.43
NEW Return = weighted avg = Portfolio = 18.20%



Слайд 15Efficient Frontier
Example

Correlation Coefficient = .3
Stocks σ % of Portfolio Avg Return
Portfolio 28.1 50% 17.4%
New Corp 30 50% 19%

NEW Standard Deviation = weighted avg = 31.80
NEW Standard Deviation = Portfolio = 23.43
NEW Return = weighted avg = Portfolio = 18.20%

NOTE: Higher return & Lower risk
How did we do that? DIVERSIFICATION

Слайд 16Efficient Frontier
A
B
Return
Risk (measured as σ)


Слайд 17Efficient Frontier
A
B
Return
Risk
AB


Слайд 18Efficient Frontier
A
B
N
Return
Risk
AB


Слайд 19Efficient Frontier
A
B
N
Return
Risk
AB
ABN


Слайд 20Efficient Frontier
A
B
N
Return
Risk
AB
Goal is to move up and left.

WHY?

ABN


Слайд 21Efficient Frontier
Return
Risk
Low Risk
High Return
High Risk
High Return
Low Risk
Low Return
High Risk
Low Return


Слайд 22Efficient Frontier
Return
Risk
Low Risk
High Return
High Risk
High Return
Low Risk
Low Return
High Risk
Low Return


Слайд 23Efficient Frontier
Return
Risk
A
B
N
AB
ABN


Слайд 24Security Market Line
Return
Risk
.
rf
Risk Free
Return =
Efficient Portfolio


Слайд 25Security Market Line
Return
.
rf
Risk Free
Return =
Efficient Portfolio
BETA
1.0


Слайд 26Security Market Line
Return
.
rf
Risk Free
Return =
BETA
Security Market Line (SML)


Слайд 27
Security Market Line
Return
BETA
rf
1.0
SML
SML Equation = rf + B ( rm -

rf )

Слайд 28
Capital Asset Pricing Model
R = rf + B ( rm

- rf )

CAPM


Слайд 29Testing the CAPM
Avg Risk Premium 1931-65
Portfolio Beta
1.0
SML
30

20

10

0










Investors
Market Portfolio

Beta vs. Average Risk

Premium

Слайд 30Testing the CAPM
Avg Risk Premium 1966-91
Portfolio Beta
1.0
SML
30

20

10

0
Investors
Market Portfolio











Beta vs. Average Risk

Premium

Слайд 31Testing the CAPM
High-minus low book-to-market
Return vs. Book-to-Market
Dollars
Low minus big
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Слайд 32Consumption Betas vs Market Betas
Stocks
(and other risky assets)
Wealth = market
portfolio


Слайд 33

Arbitrage Pricing Theory
Alternative to CAPM

Expected Risk

Premium = r - rf
= Bfactor1(rfactor1 - rf) + Bf2(rf2 - rf) + …

Return = a + bfactor1(rfactor1) + bf2(rf2) + …

Слайд 34Arbitrage Pricing Theory
Estimated risk premiums for taking on risk factors
(1978-1990)


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика