General physiology of the excitable tissues презентация

Содержание

THE RESTING CELL HIGH POTASSIUM LOW SODIUM NA/K ATPASE PUMP RESTING POTENTIAL ABOUT 90 - 120 MV OSMOTICALLY BALANCED (CONSTANT VOLUME)

Слайд 1Lecture 1
General physiology of the excitable tissues.


Слайд 2THE RESTING CELL
HIGH POTASSIUM
LOW SODIUM
NA/K ATPASE PUMP
RESTING POTENTIAL ABOUT 90

- 120 MV
OSMOTICALLY BALANCED (CONSTANT VOLUME)

Слайд 4BIOELECTRICITY
THE ORIGIN OF THE MEMBRANE POTENTIAL


Слайд 5MOBILITY OF IONS DEPENDS ON HYDRATED SIZE
IONS WITH SMALLER CRYSTAL RADIUS

HAVE A HIGHER CHARGE DENSITY
THE HIGHER CHARGE DENSITY ATTRACTS MORE WATER OF HYDRATION
THUS THE SMALLER THE CRYSTAL RADIUS, THE LOWER THE MOBILITY IN WATER


Слайд 6IONS MOVE WITH THEIR HYDRATION SHELLS
- +
-

+



Hydration Shells

- +

- +

- +

- +

- +

- +

- +

- +

- +


Слайд 7ELECTRONEUTRAL DIFFUSSION
HIGH SALT
CONCEMTRATION
LOW SALT
CONCEMTRATION
BARRIER SEPARATES THE
TWO SOLUTIONS


Слайд 8ELECTRONEUTRAL DIFFUSSION
+
-
CHARGE SEPARATION = ELECTRICAL POTENTIAL


Слайд 9ELECTRICAL POTENTIAL=CHARGE SEPARATION
In water, without a membrane hydrated
Chloride is smaller

than hydrated Sodium,
therefore faster:

Cl-

Na+

The resulting separation of charge is called an
ELECTRICAL POTENTIAL

+

-


Слайд 10THE MEMBRANE POTENTIAL


M
E
M
B
R
A
N
E
Extracellular
Fluid
Intracellular
Fluid
Na+
K+
Sodium channel is less open causing sodium to be

slower

Potassium channel is more open causing potassium to be faster

+

-

MEMRANE POTENTIAL
(ABOUT 90 -120 mv)


Слайд 11THE ORIGIN OF BIOELECTRICITY
POTASSIUM CHANNELS ALLOW HIGH MOBILITY
SODIUM CHANNELS LESS OPEN
CHARGE

SEPARATION OCCURS UNTIL BOTH MOVE AT SAME SPEED
STEADY STEADY IS ACHIEVED WITH A CONSTANT MEMBRANE POTENTIAL

Слайд 12THE RESTING CELL
HIGH POTASSIUM
LOW SODIUM
NA/K ATPASE PUMP
RESTING POTENTIAL ABOUT 90

- 120 MV
OSMOTICALLY BALANCED (CONSTANT VOLUME)

Слайд 14ACTIVE TRANSPORT
ADP
ATP


Слайд 15ACTIVE TRANSPORT REQUIRES AN INPUT OF ENERGY
USUALLY IN THE FORM OF

ATP
ATPase IS INVOLVED
SOME ASYMMETRY IS NECESSARY
CAN PUMP UPHILL

Слайд 16EXCITABLE TISSUES
NERVE AND MUSCLE
VOLTAGE GATED CHANNELS
DEPOLARIZATION LESS THAN THRESHOLD IS GRADED
DEPOLARIZATION

BEYOND THRESHOLD LEADS TO ACTION POTENTIAL
ACTION POTENTIAL IS ALL OR NONE

Слайд 17THE NERVE CELL







CELL
BODY
DENDRITES
AXON
AXON
HILLOCK
AXON
TERMINALS


Слайд 18EXCITABLE TISSUES:THE ACTION POTENTIAL
THE MEMBRANE USES VOLTAGE GATED CHANNELS TO SWITCH

FROM A POTASSIUM DOMINATED TO A SODIUM DOMINATED POTENTIAL
IT THEN INACTIVATES AND RETURNS TO THE RESTING STATE
THE RESPONSE IS “ALL OR NONE”

Слайд 19FOR EACH CONCENTRATION
DIFFERENCE ACROSS THE
MEMBRANE THERE IS AN ELECTRIC

POTENTIAL DIFFERENCE WHICH
WILL PRODUCE EQUILIBRIUM.

AT EQUILIBRIUM NO
NET ION FLOW OCCURS

EQUILIBRIUM POTENTIALS FOR IONS


Слайд 20THE EQUILIBRIUM MEMBRANE POTENTIAL FOR POTASSIUM IS -90 mV





+
-
CONCENTRATION
POTENTIAL
K+
K+
IN


Слайд 21THE EQUILIBRIUM MEMBRANE POTENTIAL FOR SODIUM IS + 60 mV





Na+
Na+
+
-
CONCENTRATION
POTENTIAL
IN
OUT


Слайд 22THE RESTING POTENTIAL IS NEAR THE POTASSIUM EQUILIBRIUM POTENTIAL
AT REST THE

POTASSIUM CHANNELS ARE MORE OPEN AND THE POTASSIUM IONS MAKE THE INSIDE OF THE CELL NEGATIVE
THE SODIUM CHANNELS ARE MORE CLOSED AND THE SODIUM MOVES SLOWER

Слайд 23EVENTS DURING EXCITATION
DEPOLARIZATION EXCEEDS THRESHOLD
SODIUM CHANNELS OPEN
MEMBRANE POTENTIAL SHIFTS FROM

POTASSIUM CONTROLLED (-90 MV) TO SODIUM CONTROLLED (+60 MV)
AS MEMBRANE POTENTIAL REACHES THE SODIUM POTENTIAL, THE SODIUM CHANNELS CLOSE AND ARE INACTIVATED
POTASSIUM CHANNELS OPEN TO REPOLARIZE THE MEMBRANE

Слайд 24OPENING THE SODIUM CHANNELS ALLOWS SODIUM TO RUSH IN
THE MEMBRANE DEPOLARIZES

AND THEN THE MEMBRANE POTENTIAL APPROACHES THE SODIUM EQUILIBRIUM POTENTIAL
THIS RADICAL CHANGE IN MEMBRANE POTENTIAL CAUSES THE SODIUM CHANNELS TO CLOSE (INACTIVATION) AND THE POTASSIUM CHANNELS TO OPEN REPOLARIZING THE MEMBRANE
THERE IS A SLIGHT OVERSHOOT (HYPERPOLARIZATION) DUE TO THE POTASSIUM CHANNELS BEING MORE OPEN

Слайд 25GRADED VS ALL OR NONE
A RECEPTOR’S RESPONSE TO A STIMULUS

IS GRADED

IF THRESHOLD IS EXCEEDED, THE ACTION POTENTIAL RESULTING IS ALL OR NONE

Слайд 28PROPAGATION OF THE ACTION POTENTIAL

+++++
--------
---------------------
+++++++++++++
AXON MEMBRANE
INSIDE
OUTSIDE
ACTION
POTENTIAL


DEPOLARIZING
CURRENT



Слайд 29PROPAGATION OF THE ACTION POTENTIAL

+++++
--------
---------------------
+++++++++++++
AXON MEMBRANE
INSIDE
OUTSIDE
ACTION
POTENTIAL


DEPOLARIZING
CURRENT



Слайд 30PROPAGATION OF THE ACTION POTENTIAL

--+++
++------
+++------------------
---++++++++++
AXON MEMBRANE
INSIDE
OUTSIDE
ACTION
POTENTIAL


DEPOLARIZING
CURRENT



Слайд 31PROPAGATION OF THE ACTION POTENTIAL

--------
+++++
++++++-------
-----------++++
AXON MEMBRANE
INSIDE
OUTSIDE
ACTION
POTENTIAL


DEPOLARIZING
CURRENT



Слайд 32SALTATORY CONDUCTION

+++++
--------
--------
+++++
AXON MEMBRANE
INSIDE
OUTSIDE
ACTION
POTENTIAL


DEPOLARIZING
CURRENT


MYELIN

NODE OF
RANVIER
NODE OF
RANVIER


Слайд 33NORMALLY A NERVE IS EXCITED BY A SYNAPSE OR BY A

RECEPTOR

MANY NERVES SYNAPSE ON ANY GIVEN NERVE
RECEPTORS HAVE GENERATOR POTENTIALS WHICH ARE GRADED
IN EITHER CASE WHEN THE NERVE IS DEPOLARIZED BEYOND THRESHOLD IT FIRE AN ALL-OR-NONE ACTION POTENTIAL AT THE FIRST NODE OF RANVIER


Слайд 35THE SYNAPSE
JUNCTION BETWEEN TWO NEURONS
CHEMICAL TRANSMITTER
MAY BE 100,000 ON A SINGLE

CNS NEURON
SPATIAL AND TEMPORAL SUMMATION
CAN BE EXCITATORY OR INHIBITORY

Слайд 36THE SYNAPSE

SYNAPTIC
VESSICLES


•••
•••
•••
•••
•••
•••
•••
•••
•••


INCOMING
ACTION


POTENTIAL




CALCIUM
CHANNEL




ION
CHANNEL


RECEPTOR




ENZYME



Слайд 37THE SYNAPSE

SYNAPTIC
VESSICLES


•••
•••
•••
•••
•••
•••
•••
•••
•••


INCOMING
ACTION


POTENTIAL




CALCIUM
CHANNEL




ION
CHANNEL


RECEPTOR




ENZYME



Слайд 38THE SYNAPSE

SYNAPTIC
VESSICLES


•••
•••
•••
•••
•••
•••
•••
•••
•••


INCOMING
ACTION


POTENTIAL




CALCIUM
CHANNEL




ION
CHANNEL


RECEPTOR




ENZYME




Слайд 39THE SYNAPSE

SYNAPTIC
VESSICLES


•••
•••
•••
•••
•••
•••
•••
•••
•••



CALCIUM


CHANNEL




ION
CHANNEL


RECEPTOR




ENZYME




Слайд 40THE SYNAPSE

SYNAPTIC
VESSICLES


•••
•••
•••
•••
•••
•••
•••
•••
•••



CALCIUM


CHANNEL




ION
CHANNEL


RECEPTOR




ENZYME



•••


Слайд 41THE SYNAPSE

SYNAPTIC
VESSICLES


•••
•••
•••
•••
•••
•••
•••
•••
•••



CALCIUM


CHANNEL




ION
CHANNEL


RECEPTOR




ENZYME



Слайд 42THE SYNAPSE

SYNAPTIC
VESSICLES


•••
•••
•••
•••
•••
•••
•••
•••
•••



CALCIUM


CHANNEL




ION
CHANNEL


RECEPTOR




ENZYME



Слайд 43POSTSYNAPTIC POTENTIALS
RESTING
POTENTIAL
EPSP

TIME


Слайд 44TEMPORAL SUMMATION


TIME
TOO FAR APART IN TIME:
NO SUMMATION


Слайд 45TEMPORAL SUMMATION


TIME
CLOSER IN TIME:
SUMMATION BUT
BELOW THRESHOLD

THRESHOLD


Слайд 46TEMPORAL SUMMATION


TIME
STILL CLOSER IN
TIME: ABOVE
THRESHOLD

THRESHOLD


Слайд 47SPATIAL SUMMATION


TIME
SIMULTANEOUS
INPUT FROM TWO
SYNAPSES: ABOVE
THRESHOLD

THRESHOLD


Слайд 48EPSP-IPSP CANCELLATION



Слайд 49NEURO TRANSMITTERS
ACETYL CHOLINE
DOPAMINE
NOREPINEPHRINE
EPINEPHRINE
SEROTONIN

HISTAMINE
GLYCINE
GLUTAMINE
GAMMA-AMINOBUTYRIC ACID (GABA)


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика