Основы медицинской информатики презентация

ЧТО МЫ НАУЧИЛИСЬ ДЕЛАТЬ С ПОМОЩЬЮ ПРОГРАММЫ EXCEL: 1.Составлению графических схем связей между данными. 2.Создавать таблицы 3.Рассчитывать основные параметры математической статистики на основе этих таблиц 4.Производить корреляционный анализ 5.Рассчитывать регрессию 6.Создавать

Слайд 1ОСНОВЫ МЕДИЦИНСКОЙ ИНФОРМАТИКИ
Выполнили:

Шейнина Е.М.
Сержант О.В

Слайд 2ЧТО МЫ НАУЧИЛИСЬ ДЕЛАТЬ С ПОМОЩЬЮ ПРОГРАММЫ EXCEL:
1.Составлению графических схем связей

между данными.
2.Создавать таблицы
3.Рассчитывать основные параметры математической статистики на основе этих таблиц
4.Производить корреляционный анализ
5.Рассчитывать регрессию
6.Создавать модели, основанные на ней

Слайд 3ГРАФИЧЕСКАЯ СХЕМА СВЯЗЕЙ МЕЖДУ ДАННЫМИ


Слайд 4СОЗДАНИЕ ТАБЛИЦЫ


Слайд 5РАСЧЁТ ОСНОВНЫХ ПАРАМЕТРОВ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ НА ОСНОВЕ ТАБЛИЦ
С помощью функции анализ

данных мы нашли такие параметры как среднее, стандартная ошибка, медиана, мода, стандартное отклонение, дисперсия выборки, эксцесс, асимметричность, интервал, минимум, максимум, сумма, счёт.

Слайд 6КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
-это метод, позволяющий обнаружить зависимость между несколькими случайными

величинами.

Слайд 7 Допустим, проводится независимое измерение различных параметров у одного типа объектов.

Из этих данных можно получить качественно новую информацию - о взаимосвязи этих параметров. Для этого вводится коэффициент корреляции. Это величина, характеризующая направление и силу связи между признаками.Одним числом дает представление о направлении и силе связи между признаками (явлениями), пределы его колебаний от 0 до ± 1 .


Слайд 8Сила корреляционной связи:
сильная: ±0,7 до ±1
средняя: ±0,3 до ±0,699


слабая: 0 до ±0,299


Слайд 9С ПОМОЩЬЮ ФУНКЦИИ АНАЛИЗ ДАННЫХ, КОРРЕЛЯЦИЯ, МЫ СОЗДАЛИ КОРРЕЛЯЦИОННУЮ МАТРИЦУ, НАШЛИ

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ МЕЖДУ ОТДЕЛЬНЫМИ ПАРАМЕТРАМИ И ПРЕДСТАВИЛИ ЭТО В ВИДЕ ДИАГРАММЫ РАССЕИВАНИЯ. ТЕМ САМЫМ НАЙДЯ ЗАВИСИМОСТЬ МЕЖДУ НА ПЕРВЫЙ ВЗГЛЯД ОБОСОБЛЕННЫМИ ПОКАЗАТЕЛЯМИ ЗДОРОВЬЯ, СОЦИАЛЬНЫМ ПОЛОЖЕНИЕМ И ИСХОДОМ ЗАБОЛЕВАНИЯ БОЛЬНЫХ



Слайд 11Важную роль при исследовании взаимосвязей между статистическими выборками кроме корреляционного и

дисперсионного анализа играет регрессионный анализ. Регрессия позволяет проанализировать воздействие на какую-либо зависимую переменную одной или более независимых переменных и позволяет установить модель этой зависимости.

Слайд 12 Если рассматривается зависимость между одной зависимой переменной Y и

не-сколькими независимыми X1, X2, …, Xn, то речь идет о множественной линейной регрессии. В этом случае уравнение регрессии имеет вид: Y = a0 + a1X1 + a2X2 +…+anXn, где a1, a2, …, an - коэффициенты при независимых переменных, которые нужно вычислить (коэффициенты регрессии), a0 –константа.

Слайд 13 При построении регрессионной модели важнейшими моментами являются оценка ее

адекватности (эффективности) и значимости, на основании которых можно судить о возможности применения в практике полученной модели. Мерой оценки адекватности регрессионной модели является коэффициент детерминации R2 (R-квадрат), который определяет, с какой степенью точности полученное уравнение регрессии аппроксимирует исходные данные. Значимость регрессионной модели оценивается с помощью критерия Фишера (F – критерия). Если величина F – критерия значима (р < 0,05), то регрессионная модель является значимой.


Слайд 14С помощью функции анализ данных, регрессия, мы научились строить модель основанную

на регрессии, нашли коэффициент Фишера и R-квадрат. Тем самым получив предсказание исхода заболевания.

Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика