История создания вычислительной техники презентация

Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета,

Слайд 1История создания вычислительной техники


Слайд 2Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной

оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весывесы, весы, которыевесы, которые весы, которые сталивесы, которые стали, весы, которые стали, такимвесы, которые стали, таким весы, которые стали, таким образомвесы, которые стали, таким образом, весы, которые стали, таким образом, однимвесы, которые стали, таким образом, одним весы, которые стали, таким образом, одним извесы, которые стали, таким образом, одним из весы, которые стали, таким образом, одним из первыхвесы, которые стали, таким образом, одним из первых весы, которые стали, таким образом, одним из первых устройстввесы, которые стали, таким образом, одним из первых устройств весы, которые стали, таким образом, одним из первых устройств длявесы, которые стали, таким образом, одним из первых устройств для весы, которые стали, таким образом, одним из первых устройств для количественноговесы, которые стали, таким образом, одним из первых устройств для количественного весы, которые стали, таким образом, одним из первых устройств для количественного определениявесы, которые стали, таким образом, одним из первых устройств для количественного определения весы, которые стали, таким образом, одним из первых устройств для количественного определения массывесы, которые стали, таким образом, одним из первых устройств для количественного определения массы.

ЗвёздочкиЗвёздочки ии шестерёнки  были были  были сердцем были сердцем  были сердцем механических были сердцем механических  были сердцем механических устройств были сердцем механических устройств  были сердцем механических устройств для были сердцем механических устройств для  были сердцем механических устройств для счёта были сердцем механических устройств для счёта.
С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. АнтикитерскийАнтикитерский Антикитерский механизмАнтикитерский механизм, Антикитерский механизм, обнаруженныйАнтикитерский механизм, обнаруженный Антикитерский механизм, обнаруженный вАнтикитерский механизм, обнаруженный в Антикитерский механизм, обнаруженный в началеАнтикитерский механизм, обнаруженный в начале XX Антикитерский механизм, обнаруженный в начале XX векаАнтикитерский механизм, обнаруженный в начале XX века, Антикитерский механизм, обнаруженный в начале XX века, которыйАнтикитерский механизм, обнаруженный в начале XX века, который Антикитерский механизм, обнаруженный в начале XX века, который былАнтикитерский механизм, обнаруженный в начале XX века, который был Антикитерский механизм, обнаруженный в начале XX века, который был найденАнтикитерский механизм, обнаруженный в начале XX века, который был найден Антикитерский механизм, обнаруженный в начале XX века, который был найден наАнтикитерский механизм, обнаруженный в начале XX века, который был найден на Антикитерский механизм, обнаруженный в начале XX века, который был найден на местеАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушенияАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античногоАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного суднаАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшегоАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерноАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно вАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 годуАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году доАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до нАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. эАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (поАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другимАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникамАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам вАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 илиАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или дажеАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 годуАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году доАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до нАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. эАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), дажеАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умелАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделироватьАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движениеАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планетАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. ПредположительноАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно егоАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовалиАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали дляАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарныхАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычисленийАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений вАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозныхАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целяхАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказанияАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечныхАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных иАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунныхАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затменийАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определенияАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времениАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посеваАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева иАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбораАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожаяАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая иАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и тАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/пАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. ВычисленияАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялисьАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись заАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счётАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединенияАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения болееАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения более 30-Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения более 30-тиАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения более 30-ти Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения более 30-ти бронзовыхАнтикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения более 30-ти бронзовых Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в 80 или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т/п. Вычисления выполнялись за счёт соединения более 30-ти бронзовых колёсАнтикитерский механизм, обнаруженный в начале XX века, котор


Слайд 31835—1900-е: первые программируемые машины
Определяющая особенность «универсального компьютера» — это программируемость, что позволяет

компьютеру эмулировать любую другую вычисляющую систему всего лишь заменой сохранённой последовательности инструкций.
В 1835 году Чарльз Бэббидж описал свою аналитическую машину. Это был проект компьютера общего назначения, с применением перфокарт в качестве носителя входных данных и программы, а также парового двигателя в качестве источника энергии. Одной из ключевых идей было использование шестерней для выполнения математических функций.





Слайд 41930-е — 1960-е настольные калькуляторы
АрифмометрАрифмометр ««Феликс«Феликс» — «Феликс» — самый«Феликс» — самый «Феликс» — самый распространённый«Феликс» —

самый распространённый «Феликс» — самый распространённый в«Феликс» — самый распространённый в «Феликс» — самый распространённый в СССР«Феликс» — самый распространённый в СССР. «Феликс» — самый распространённый в СССР. Выпускался«Феликс» — самый распространённый в СССР. Выпускался «Феликс» — самый распространённый в СССР. Выпускался в«Феликс» — самый распространённый в СССР. Выпускался в 1929«Феликс» — самый распространённый в СССР. Выпускался в 1929—«Феликс» — самый распространённый в СССР. Выпускался в 1929—1978 «Феликс» — самый распространённый в СССР. Выпускался в 1929—1978 гг«Феликс» — самый распространённый в СССР. Выпускался в 1929—1978 гг.
К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни. С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить. Словом «computer» (буквально — «вычислитель») называлась должность — это были люди, которые использовали калькуляторы для выполнения математических вычислений. В ходе МанхэттенскогоМанхэттенского Манхэттенского проектаМанхэттенского проекта, Манхэттенского проекта, будущийМанхэттенского проекта, будущий Манхэттенского проекта, будущий НобелевскийМанхэттенского проекта, будущий Нобелевский Манхэттенского проекта, будущий Нобелевский лауреатМанхэттенского проекта, будущий Нобелевский лауреат Манхэттенского проекта, будущий Нобелевский лауреат РичардМанхэттенского проекта, будущий Нобелевский лауреат Ричард Манхэттенского проекта, будущий Нобелевский лауреат Ричард ФейнманМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман былМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющимМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целойМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой командыМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителейМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многиеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие изМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которыхМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых былиМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинамиМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математикамиМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающимиМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальныеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравненияМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которыеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решалисьМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались дляМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военныхМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нуждМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. ДажеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитыйМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый СтаниславМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав МартинМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин УламМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам ужеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже послеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончанияМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войныМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны былМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужденМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден кМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе поМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводуМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математическихМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выраженийМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений вМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимыеМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближенияМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — дляМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для проектаМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для проекта Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для проекта водороднойМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для проекта водородной Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для проекта водородной бомбыМанхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд. Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения — для проекта водородной бомбы.



Слайд 51801: появление перфокарт


Перфокарточная система музыкального автомата
В 1801 году Жозеф Мари Жаккар разработал ткацкий

станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.
В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.



Слайд 6Появление аналоговых вычислителей в предвоенные годы

Перед ВторойВторой Второй мировойВторой мировой Второй мировой

войнойВторой мировой войной Второй мировой войной механическиеВторой мировой войной механические Второй мировой войной механические иВторой мировой войной механические и Второй мировой войной механические и электрическиеВторой мировой войной механические и электрические Второй мировой войной механические и электрические аналоговыеВторой мировой войной механические и электрические аналоговые Второй мировой войной механические и электрические аналоговые компьютерыВторой мировой войной механические и электрические аналоговые компьютеры Второй мировой войной механические и электрические аналоговые компьютеры считалисьВторой мировой войной механические и электрические аналоговые компьютеры считались Второй мировой войной механические и электрические аналоговые компьютеры считались наиболееВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современнымиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинамиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, иВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многиеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считалиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, чтоВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что этоВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущееВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительнойВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техникиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. АналоговыеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютерыВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовалиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимуществаВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества тогоВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, чтоВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математическиеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойстваВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явленийВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малогоВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштабаВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положенияВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёсВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс илиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическоеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжениеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение иВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и токВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобныВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математикеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике другихВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физическихВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явленийВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, напримерВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например такихВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких какВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистическиеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траекторииВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерцияВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонансВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, переносВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергииВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, моментВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерцииВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции иВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и тВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. пВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. ОниВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировалиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали этиВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти иВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и другиеВторой мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, момент инерции и т. п. Они моделировали эти и другие Второй мировой войной механические и электрические аналоговые компьютеры считались наиболее современными машинами, и многие считали, что это будущее вычислительной техники. Аналоговые компьютеры использовали преимущества того, что математические свойства явлений малого масштаба — положения колёс или электрическое напряжение и ток — подобны математике других физических явлений, например таких как баллистические траектории, инерция, резонанс, перенос энергии, мом

Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика