Modes of ventilation презентация

Содержание

Modes of Ventilation The main indication for ventilatory support is Respiratory Failure

Слайд 1 Modes of Ventilation Dr. Eugenia Mahamid Rambam Medical Center


Слайд 2Modes of Ventilation

The main indication for ventilatory support
is
Respiratory Failure


Слайд 3Categories of Respiratory Failure


HYPOXEMIC
ARDS
PULMONARY EDEMA
PULMONARY HEMORRHAGE
PNEUMONIA

Low compliance lung disease:
Low PO2,

Low SaO2



Слайд 4
HYPERCARBIC
OBSTRUCTION TO AIRFLOW
NEUROMUSCULAR DISORDERS
DRUG

OVERDOSE
ENDOCRINOPATHIES

Increase in PCO2
Respiratory acidosis
Decrease in pH



Categories of Respiratory Failure


Слайд 5ECE

CENTRAL
DECREASED LEVEL OF


CONSCIOUSNESS


ACUTE MEDICAL AND SURGICAL
CONDITIONS
MECHANICAL VENTILATION IS USED TO
DECREASE WORK OF BREATHING

Categories of Respiratory Failure


Слайд 6A MECHANICAL VENTILATOR is
a pump providing an external source of energy

to push gases into the lungs and allow for passive exhalation (CO2 elimination).


Ventilator’s Changeable parameters

Vt = Tidal Volume
FIO2 = Fraction of Inspired Oxygen
RR = Respiratory Rate
I:E = Inspiratory to Expiratory ratio
EEP = End Expiratory Pressure
PIP = Peak Inspiratory Pressure Inspiratory Flow Rate



Слайд 7
NO = Nitric Oxide

Orientation of patient’s body in gravitational

field

OTHER MEANS AFFECTING VENTILATION


Слайд 8GENERAL CLASSES OF VENTILATORS
Negative pressure
application of negative pressure at the

chest wall and upper abdomen


Positive pressure
application of positive pressure at airway opening



Слайд 9Negative Pressure Ventilators
-
Perithoracic pump for replacement failing patients’ muscles, wide-spread use

for polio epidemics

Manually operated ventilator (Woillez, 1876)

Tank respirator “iron lung”, cuirass, body suits
(1930 - 1950)

Patient care problems:
airway obstruction, low efficacy in interstitial lung diseases, patient’s discomfort



Слайд 10Negative Pressure Ventilators








1876

1930-1950
1960


Слайд 11Positive pressure ventilators
Volume-cycled
Delivers set Vt at specified RR and

terminates
respiration when Vt is delivered.
Airway pressures are determined by respiratory system impedance (risk of barotrauma).

Pressure-cycled
Limits flow, when set pressure is
delivered (may decrease minute ventilation)







Слайд 12Positive pressure ventilators
Evita 2
Dragger - Germany


Слайд 13VENTILATOR SETTINGS
OXYGEN THERAPY

O2 delivery = Qt

(1.39 x SaO2 x Hb + 0.0031 x PaO2)

FIO2 1 0.4

Adjustment of oxygen percent to achieve
SaO2 > 90%

FIO2 > 0.6 potential oxygen toxicity
(pulmonary fibrosis)


Слайд 14MINUTE VENTILATION (VOLUME) = Vt x RR
Physiologic Vt

5mL/kg
Mechanical Vt 7 – 10mL/kg

Limitation of Vt in cases of:
airway obstruction
one lung patient
PIP > 40 cm H2O

RESPIRATORY RATE
10-12 /min or more
to match metabolic needs of the patient

VENTILATOR SETTINGS


Слайд 15


Inspiratory Flow Rate and Inspiratory to Expiratory Ratio

IFR L/min: rapidity

of airflow in airways
Ti = Inspiratory Time: the time to complete inspiration
Ti = Vt / Flow Rate
TE = Expiratory Time: time to complete exhalation
Ti + TE = T total: respiratory cycle

VENTILATOR SETTINGS


Слайд 16CMV : Controlled Mandatory Ventilation
Full mechanical support
Maintaining full V min.
Reduction of

oxygen and energy consumption
Indications:
Following intubation
Respiratory muscle fatigue ( for muscle rest)
Poor cardiac output ( VO2 of respiratory muscles)

CONVENTIONAL VENTILATION


Слайд 17CMV



fixed rate
fixed Vt
fixed flow rate
FIO2
Disadvantages:
need for sedatives + relaxants
unresponsiveness

to the changing V min. of patient
muscle atrophy

CONVENTIONAL VENTILATION

Airway pressure

Flow

inspirium

expirium

Patient’s spontaneous effort


Слайд 18ASSIST / CONTROL
⮞ Mechanical breath initiated by patient’s negative pressure.
⮞ Every

breath is machine supported (set Vt)






Disadvantages:
alkalosis
intrinsic PEEP
barotrauma: pneumothorax, pneumomediastinum,
subcutaneous emphysema, tension air cyst

CONVENTIONAL VENTILATION

Airway pressure

Flow

inspirium

expirium

Patient’s spontaneous effort


Слайд 19 IMV INTERMITTENT MANDATORY VENTILATION
combined mechanical and spontaneous

breathing
(CMV + spontaneous)












CONVENTIONAL VENTILATION

Spontaneous ventilation

5
0

inspirium

expirium

IMV

5
0

5
0

CMV

Patient’s spontaneous effort


Слайд 20SIMV SYNCHRONIZED INTERMITTENT MANDATORY VENTILATION

⮞ Synchronization of the ventilator delivered Vt

with the
patient’s spontaneous breathing.

⮞ Prevention of ventilator stacking by timing window.








CONVENTIONAL VENTILATION

A

B

Timing window

Patient’s spontaneous effort

Time (sec)

Pressure
cm H2O

PEEP


Слайд 21


















Controlled FIO2
Gas source
Reservoir
bag
Conventional
ventilator
One-way valve
PEEP
and
Exhalation
Valves


IMV CIRCUIT
CONVENTIONAL VENTILATION










Слайд 22
IMV / SIMV

Advantages

⮞ decreased need in sedatives
prevention of muscle

atrophy

⮞ lower airway pressure and intrathoracic pressure
hemodynamic stability

⮞ reduction in alkalosis
patient’s ability to regulate his rate and Vt according to metabolic requirements

CONVENTIONAL VENTILATION


Слайд 23

IMV / SIMV

Disadvantages

⮞ respiratory muscle fatigue
increased work

of breathing due to highly resistant respiratory circuit, small diameter (ETT)

⮞ possibility of respiratory acidosis


⮞ risk of cardiac decompensation
in patient with heart disease

CONVENTIONAL VENTILATION


Слайд 24PEEP and CPAP

During continuous mechanical ventilation
PEEP Positive

End Expiratory Pressure











50

40

30

20

10

0


cm H2O

CMV

PEEP

50

40

30

20

10

0

CMV

PEEP

Patient triggered

cm H2O


Слайд 25PEEP and CPAP

During spontaneous breathing
with or without inspiratory

support

CPAP Continuous Positive Airway Pressure









15

10

5

0

- 5

inspiration

expiration

PEEP


Слайд 26

















Mechanism

- Decreases Qs/Qt
without reducing edema

- Reduces number
of flooded alveoli

- Redistributes edema to
peribroncho vascular
interstitial spaces

- Decreases work
of breathing

- Decreases preload


NON PEEP

PEEP

78.6 μ

146.8 μ

80%

20 %

Qs / Qt 23.8 % 5.1 %

PEEP & CPAP




Слайд 27

Goals


⮞ Reduction of shunt
recruitment of previously collapsed alveoli
ventilation of

non-ventilated zones
continuous gas exchange (during expiration)

⮞ Prevention of atelectasis
prevention of brisk alveolar inflation and deflation
> protection of surfactant and pulmonary parenchyma



PEEP and CPAP


Слайд 28
Complications
⮞ increased intrathoracic pressure

decrease of venous returns
decrease of cardiac output











EFFECT of PEEP

venous

compression

PEEP and CPAP


Слайд 29


Complications

⮞ Increased ADH secretion, decrease of renal artery

perfusion pressure
decrease of urinary output and creatinine clearance

⮞ decreased venous return from brain
increased ICP
decrease of CPP

⮞ barotrauma – induced by PEEP ≈ 20%

PEEP and CPAP


Слайд 30PEEP / CPAP Therapy

Titrate EEP until:

⮞ PO2 ≈ 60 mmHg (Sat

O2 ≈ 90%) on FIO2 < 60%
provided cardiac output is maintained

⮞ Qs / Qt < 15%

⮞ Best PEEP on
volume-pressure
loop




15

30


B

D

C

A



Lower inflection point

Upper deflection point

500

250

Volume (mL)

Pressure cmH20

0


Слайд 31
PRESSURE SUPPORT VENTILATION (PS)

patient triggered, patient-controlled (flow-time),
pressure limited interactive ventilation with

clinician- selected level of positive pressure (2-50 cm H2O)











20

15

10

5

B

C

A

D

time

Proximal
Airway
Pressure
cmH20



Слайд 32
PRESSURE SUPPORT VENTILATION (PS)

Synchrony

PS interaction with ventilatory muscles
PS adds to

the patient’s effort to deliver Vt

Overload of ventilatory muscles
tachypnea, small Vt

PS Vt, RR





Vt mL/kg

Ventilator pressure

Muscle tension

12

8

4


Слайд 33
PRESSURE SUPPORT VENTILATION (PS)

Synchrony

Patient interaction with

ventilator:

⮞ Trigger
(prompt breath initiation, ventilator sensitivity and responsiveness)
⮞ Flow
adjustment of the gas delivery to the patient’s effort
⮞ Cycling
ventilator breath termination with the end of patient’s effort 25-30% of peak flow

Слайд 34
PRESSURE SUPPORT VENTILATION (PS)

Titration of PS

⮞ to overcome endotracheal tube

resistance
(6-10 cmH2O)

⮞ to achieve effective Vt and V min without
causing respiratory overload

⮞ non-invasive application
BIPAP* = CPAP + Pressure Support

*Bi-level Positive Airway Pressure



Слайд 35

PRESSURE CONTROL VENTILATION
Time and pressure controlled
Exhalation is passive
Vt and V min

determined by respiratory system impedance
(compliance and resistance)

Inverse ratio ventilation (IRV) I : E 3:1
Mandatory BIPAP








PEEP

pressure

T- inspiratory

T- expiratory

P. inspiratory

Tidal volume

volume

NON CONVENTIONAL VENTILATION


Слайд 36

Airway pressure release ventilation (APRV)














pressure
PEEP
Spontaneous breathing
time
volume
Spontaneous tidal volume

Tidal volume
P. inspiratory
NON CONVENTIONAL

VENTILATION

Слайд 37NON CONVENTIONAL VENTILATION
Indication: severe hypoxemic respiratory failure










Breathing lung
(baby lung)
Edema
ARDS

( CT )

Pleural effusion


Слайд 38NON CONVENTIONAL VENTILATION
Open Lung Conception
Pressure controlled, Inverse ratio ventilation with permissive

hypercapnia:
Permissive hypercapnia = increase of PCO2 until pH reaches 7.2
at pH < 7.2 give bicarbonate
Prone position




Nitric Oxide
Selective pulmonary vasodilator




Gravitational force


Слайд 39NON CONVENTIONAL VENTILATION
Proportional assist ventilation for spontaneously breathing patients

gives maximal Vt with minimal inspiratory pressure, by measuring
lung compliance and resistance

Perflubron liquid ventilation
⮞ injection of perfluorocarbon into the trachea aiming to recruiting
collapsed alveoli.

ECMO Extra Corporeal Membrane Oxygenator






IVOX IntraVenous Oxygenator (membrane “lung” inserted in inferior
vena cava

Слайд 40

HIGH FREQUENCY VENTILATION

RR 60 – 3600 / min
CONVECTION
DIFFUSION
TYPES
I. HFPPV

high frequency positive pressure ventilation
II. HFO high frequency oscillation
III. HFJT high frequency jet ventilation


INDICATIONS
I. Broncho-pleural fistula
II. Hypoxemic respiratory failure

NON CONVENTIONAL VENTILATION


Слайд 41VEANING FROM MECHANICAL VENTILATION

Necessary conditions for considering discontinuation from Mechanical Ventilation:

Stable

circulation and absence of myocardial ischemia, sepsis and uncontrolled acidosis

Adequate pulmonary O2 exchange as evidenced by
SaO2 > 90% with FIO2 < 0.4 and PEEP < 7.5 cm H2O

Adequate ability to ventilate spontaneously (Vt > 5 mL/Kg, VC = 3 x Vt, NIF > 30 cmH2O, and f < 36 /min)




Слайд 42VEANING FROM MECHANICAL VENTILATION




CMV > SIMV CPAP

+ PS (15 cmH2O) + PS (15 cmH2O)

CPAP
+ PS (8 cm H2O)



Disconnection + T Tube Extubation + O2 mask



Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика