Метод найменших квадратів наближення функцій презентация

Содержание

Питання: Постановка задачі наближення функцій. Геометричний смисл задачі наближення функцій за методом найменших квадратів (МНК). Лінійне і квадратичне наближення за МНК. Приклади наближення функцій за МНК. Функції нелінійної регресії. Засоби наближення

Слайд 1Черкаський державний технологічний університет
Дисципліна “Інформаційні технології аналізу систем”
Лекція 12-13
Викладач: Герасименко І. В.
Тема:

«Метод найменших квадратів наближення функцій»

© проф. Триус Ю.В.


Слайд 2Питання:
Постановка задачі наближення функцій.
Геометричний смисл задачі наближення функцій за методом найменших

квадратів (МНК).
Лінійне і квадратичне наближення за МНК.
Приклади наближення функцій за МНК.
Функції нелінійної регресії.
Засоби наближення функцій в системах комп’ютерної математики.

Слайд 31. Постановка задачі наближеня функцій.

Дуже часто, особливо при аналізі

емпіричних даних виникає необхідність знайти в явному вигляді функціональну залежність між величинами x та y , що одержані в результаті вимірювань або спостережень.
При аналітичному дослідженні взаємозв’язку між двома величинами x та y здійснюють ряд спостережень і в результаті одержується таблиця значень:

Слайд 41. Постановка задачі наближення функцій.


Слайд 51. Постановка задачі наближення функцій.


Слайд 61. Постановка задачі наближення функцій.


Слайд 72. Геометричний смисл задачі наближення функцій за методом найменших квадратів (МНК).
Рис.1.


Слайд 83. Лінійне і квадратичне наближення за МНК
Розглянемо наближення функції за допомогою

лінійної функції за МНК. Тоді за формулою (2) треба розв’язати задачу мінімізації виду:

Скориставшись для визначення невідомих коефіцієнтів a,b необхідними умовами екстремуму для функції від 2-х змінних, отримуємо таку систему лінійних рівнянь:

3.1. Лінійне наближення


Слайд 93. Лінійне і квадратичне наближення за МНК
3.1. Лінійне наближення
(3)
(4)
Розв’язавши цю систему

відносно a і b, одержимо явний вигляд лінійної функції наближення:

Слайд 10Приклад лінійного наближення
Приклад 1.
Нехай дослідним шляхом знайдено таблицю значень певної залежності.

За допомогою МНК знайти лінійну функцію, яка якнайкраще наближає шукану залежність.

Слайд 11Приклад лінійного наближення
Розв’язування. Для розв’язування скористаємося одержаними раніше формулами:




Для зручності занесемо

результати проміжних обрахунків у таблицю:

(3)

(4)


Слайд 12Приклад лінійного наближення
Розв’язування. (продовження)


Підставивши знайдені величини у рівняння (3), (4) одержимо

систему рівнянь:
91a+21b=179,1, Звідси a=0,974, b=4,307
21a+6b=46,3. Тоді f(x)=0,974x+4,307

(3)

(4)


Слайд 153. Лінійне і квадратичне наближення за МНК
Розглянемо наближення функції за допомогою

квадратного тричлена за МНК. Тоді за формулою (2) треба розв’язати задачу мінімізації виду:

Скориставшись для визначення невідомих коефіцієнтів a,b,c необхідними умовами екстремуму для функції від 3-х змінних, отримуємо таку систему лінійних рівнянь:

(5)

3.2. Квадратичне наближення


Слайд 163. Лінійне і квадратичне наближення за МНК
3.2. Квадратичне наближення
(6)
(7)
(8)


Слайд 193. Лінійне і квадратичне наближення за МНК
Розглянемо наближення функції за допомогою

поліному m-го степеня за МНК.


3.3. Поліноміальне наближення


Слайд 205. Функції нелінійної регресії
Враховуючи специфіку одержаної в результаті спостережень або вимірювань

залежності, в якості апроксимуючої функції обирати різні функції, зокрема:

Слайд 21Ваші запитання
8(0472) 730271
herasymenkoinna@gmail.com
Дякую за увагу!


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика