Математическая игра презентация

Мистер Марио хочет попасть из верхнего левого угла таблицы в правый нижний. Двигаться он может либо на клетку вправо, либо на клетку вниз. Попадая в каждую ячейку, Марио зарабатывает столько

Слайд 2
Мистер Марио хочет попасть из верхнего левого угла таблицы в правый

нижний. Двигаться он может либо на клетку вправо, либо на клетку вниз. Попадая в каждую ячейку, Марио зарабатывает столько монет, сколько указано в ячейке. Какое максимальное количество монет может заработать Марио? Первая и последняя клетки считаются.

Слайд 31. Какой длины может быть путь Марио?


Слайд 41. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10












Слайд 51. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Ваши ставки?


Слайд 61. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё


Слайд 71. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё

В боковушки можно попасть только одним способом.


Слайд 81. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё

В боковушки можно попасть только одним способом.


Слайд 91. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё

В боковушки можно попасть только одним способом.


Слайд 101. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё

В боковушки можно попасть только одним способом.

Во все остальные клетки количество способов попасть= сумме попасть в верхнюю и левую соседние клетки.


Слайд 111. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё

В боковушки можно попасть только одним способом.

Во все остальные клетки количество способов попасть= сумме попасть в верхнюю и левую соседние клетки.


Слайд 121. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё

В боковушки можно попасть только одним способом.

Во все остальные клетки количество способов попасть= сумме попасть в верхнюю и левую соседние клетки.


Слайд 131. Какой длины может быть путь Марио?
Оказывается длина пути не зависит

от пути и всегда равна 5+5=10











2. Сколько существует способов добраться из начальной клетки в конечную?

Построим вспомогательную таблицу. В каждой клетке будем записывать количество способов попадения в неё

В боковушки можно попасть только одним способом.

Во все остальные клетки количество способов попасть= сумме попасть в верхнюю и левую соседние клетки.


Слайд 141. Какой длины может быть путь Марио?










2. Сколько существует способов добраться

из начальной клетки в конечную?

3. А каков же максимальный путь?

Опять построим вспомогательную таблицу. Но на этот раз в ячейки будем записывать, сколько можно максимально монет, попав в эту клетку.

Здесь будет ответ.


Слайд 151. Какой длины может быть путь Марио?










2. Сколько существует способов добраться

из начальной клетки в конечную?

3. А каков же максимальный путь?

Опять построим вспомогательную таблицу. Но на этот раз в ячейки будем записывать, сколько можно максимально монет, попав в эту клетку.




Слайд 161. Какой длины может быть путь Марио?










2. Сколько существует способов добраться

из начальной клетки в конечную?

3. А каков же максимальный путь?

Опять построим вспомогательную таблицу. Но на этот раз в ячейки будем записывать, сколько можно максимально монет, попав в эту клетку.

Для каждой клетки выясняем, откуда выгоднее в неё попасть: сверху или слева (где больше) и прибавляем к соответствующему числу текущую сумму.


Слайд 171. Какой длины может быть путь Марио?










2. Сколько существует способов добраться

из начальной клетки в конечную?

3. А каков же максимальный путь?

Опять построим вспомогательную таблицу. Но на этот раз в ячейки будем записывать, сколько можно максимально монет, попав в эту клетку.

Для каждой клетки выясняем, откуда выгоднее в неё попасть: сверху или слева (где больше) и прибавляем к соответствующему числу текущую сумму.


Слайд 181) Посчитать длину пути
2) Посчитать количество способов добраться
3) Посчитать максимальный заработок
Вариант

1

Вариант 2


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика