8. Операции над графами
9. Способы задания графов
3. Маршруты, цепи, циклы
10. Некоторые типы графов
Deg(6)=3, deg(5)=1, 5 – висячая вершина
N(3)={2,1,6,4}, deg(7)=0, 7 – изолированная вершина
Вершина называется нечетной, если d(v) – нечетное число, четной если d(v) – четное число. Степень каждой вершины полного графа на единицу меньше числа его вершин.
Рис 2.1
2. Степень вершины
Свойства степени вершины
Если то маршрут замкнут, в противном случае открыт.
Если все ребра различны, то маршрут называется цепью.
Если все вершины различны, то маршрут называется простой цепью. В цепи вершины называются концами цепи, т. е. цепь концами соединяет вершины . Цепь, соединяющая вершины , обозначается ( ). Очевидно, что если есть цепь, соединяющая вершины - простая цепь, соединяющая эти вершины.
Замкнутая цепь называется циклом, замкнутая простая – простым циклом, число циклов обозначается z(G). Граф без циклов – ациклический.
Длинной маршрута называется количество ребер в нем (с повторениями).
Если маршрут , то длина маршрута М равна k, обозначается
3. Маршруты, цепи, циклы
Так, на рисунке любая пара вершин, взятая из набора А,Б,В,Г,Д ,будет связной, т.к. от любой из них к любой можно "пройти" по ребрам графа.
Рис 4.2
Рис 4.1
4. Связность графов
Ребро графа называется ориентированным, если одну вершину ребра считают началом ребра а другую концом, на рисунке изображают стрелкой между вершинами. Граф у которого все ребра ориентированы – ориентированный.
Ориентированное ребро
Неориентированное ребро
Одна и та же вершина ориентированного графа может служить началом для одних ребер и концом для других, поэтому различают две степени вершины:
Степенью выхода вершины орграфа – число выходящих из вершины ребер;
Степенью входа вершины орграфа – число входящих в вершину ребер.
Рис 5.1
Рис 5.2
5. Ориентированные графы
Изолированной вершиной называется вершина у которой степень входа и степень выхода равны 0;
Источником называется вершина, степень выхода которой положительна, а степень входа равна 0;
Стоком называется вершина, степень входа которой положительна, а степень выхода равна 0.
Путем в ориентированном графе называется последовательность ориентированных ребер.
Простым путем в ориентированном графе называется путь, в котором ни одна вершина не содержится более одного раза (Рис 5.3). На рис 5.4 изображен не простой путь.
Рис 5.3
Рис 5.4
Замкнутый путь в ориентированном графе называется ориентированным циклом или контуром. Длиной пути называется число ребер в этом пути.
Полным ориентированным графом называется граф, каждая пара вершин которого соединена в точности одним ориентированным ребром. Если ребра полного графа неориентированные, то граф соответственно будет полным неориентированным.
Ориентированный граф
6. Изоморфизм графов
Два графа называются изоморфными, если между множествами их вершин существует биективное (взаимно-однозначное) соответствие, такое, что вершины соединены ребрами в одном из графов в том и только в том случае, когда соответствующие им вершины соединены в другом графе.
Рис 7.1
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть