Basic transformations of graphs презентация

Lecture overview: learning outcomes At the end of this lecture, you should be able to: 1.5.1 Sketch the graph of a cubic function given in factorized form. 1.5.2 Apply a horizontal

Слайд 1Foundation Year Program
2017-18
NUFYP Mathematics & Computing Science Pre-Calculus course
1.5 Basic transformations

of graphs


Lecture slides prepared by: Viktor Ten

Слайд 2Lecture overview: learning outcomes
At the end of this lecture, you should

be able to:
1.5.1 Sketch the graph of a cubic function given in factorized form.
1.5.2 Apply a horizontal translation to a given curve.
1.5.3 Apply a vertical translation to a given curve.
1.5.4 Apply a vertical stretch to a given curve.
1.5.5 Apply a horizontal stretch to a given curve.
1.5.6 Apply simple combined transformations to a given curve.

Foundation Year Program

2017-18


Слайд 31.5.1 : Sketch the graph of cubic function given in factorized

form.

Foundation Year Program

2017-18

 


Слайд 4Foundation Year Program
2017-18
 


Слайд 5Foundation Year Program
2017-18


Слайд 6Foundation Year Program
2017-18
2A


Слайд 7Foundation Year Program
2017-18


Слайд 8Foundation Year Program
2017-18
Transformations
We will now consider four elementary transformations and some

simple combined transformations.

f(x) → f(x+a) Translation (x-axis)
f(x) → f(x)+a Translation (y-axis)
f(x) → f(ax) Scaling (stretching)(x-axis)
f(x) → af(x) Scaling (stretching)(y-axis)

Слайд 91.5.2. Horizontal translation
Foundation Year Program
2017-18
f(x) → f(x + a)
Shape is unchanged.
Moves

to the left if a>0.
Moves to the right if a<0.

h(x) =(x+2)2 - 4

f(x) = x2 - 4

g(x) =(x-2)2 - 4


Слайд 101.5.3. Vertical translation
Foundation Year Program
2017-18
 
Shape is unchanged.
Moves upwards if a>0.
Moves downwards

if a<0.

h(x) = x2 - 8

g(x) = x2

f(x) = x2 - 4


Слайд 11Foundation Year Program
2017-18


Слайд 12Foundation Year Program
2017-18


Слайд 13Foundation Year Program
2017-18


Слайд 14Foundation Year Program
2017-18


Слайд 151.5.4. Vertical stretch
Foundation Year Program
2017-18
 
Roots unchanged
Axis of symmetry unchanged
Intercept at (0,

c) is transformed to (0, ac)
If a < 0, the branches of transformed curve are reoriented from upward to downward or vice versa from original.

f(x) = x2 - 4

h(x) = -0.5(x2 – 4)

g(x) = 2(x2 – 4)


Слайд 161.5.5 Horizontal stretch
Foundation Year Program
2017-18
 
f(x) = x2 - 4
h(x) = (0.5x)2

- 4

Even power. Location of roots changes if |a|≠ 1. Axis of symmetry unchanged.

g(x) = (2x)2 - 4

f(x) = x3 – 3x2 – x + 2

g(x) = (1.2x)3 – 3(1.2x)2 –(1.2x) + 2

h(x) = (0.8x)3 – 3(0.8x)2 –(0.8x) + 2

Odd power.


Слайд 17Foundation Year Program
2017-18


Слайд 18Foundation Year Program
2017-18


Слайд 19Foundation Year Program
2017-18


Слайд 201.5.6 Simple combined transformations
Foundation Year Program
2017-18


Слайд 21Foundation Year Program
2017-18


Слайд 22Foundation Year Program
2017-18


Слайд 23Foundation Year Program
2017-18


Слайд 24Foundation Year Program
2017-18


Слайд 25Foundation Year Program
2017-18


Слайд 26Foundation Year Program
2017-18


Слайд 27Foundation Year Program
2017-18


Слайд 28Foundation Year Program
2017-18


Слайд 29In this lecture, we covered
1.5.1 Sketch the graph of a cubic

function given in factorized form.
1.5.2 Apply a horizontal translation to a given curve.
1.5.3 Apply a vertical translation to a given curve.
1.5.4 Apply a vertical stretch to a given curve.
1.5.5 Apply a horizontal stretch to a given curve.
1.5.6 Apply simple combined transformations to a given curve.

Foundation Year Program

2017-18


Слайд 30Next lecture
1.6 Simultaneous equations



Foundation Year Program
2017-18


Слайд 31Material in some of these slides has been reproduced from:

Attwood,

G., Macpherson, A., Moran, B., Petran, J., Pledger, K., Staley, G. and Wilkins, D. (2008), Edexcel AS and A Level Modular Mathematics series C1, Pearson, Harlow, UK.
Attwood, G., Macpherson, A., Moran, B., Petran, J., Pledger, K., Staley, G. and Wilkins, D. (2008), Edexcel AS and A Level Modular Mathematics series C3, Pearson, Harlow, UK.

Foundation Year Program

2017-18


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика