Презентация на тему Манипулирование данными в R

Презентация на тему Манипулирование данными в R, предмет презентации: Информатика. Этот материал содержит 36 слайдов. Красочные слайды и илюстрации помогут Вам заинтересовать свою аудиторию. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций ThePresentation.ru в закладки!

Слайды и текст этой презентации

Слайд 1
Текст слайда:

Манипулирование данными в R


Слайд 2
Текст слайда:

Сортировка. Функция order

Упорядочение лучше производить косвенно: найти вектор индексов, на котором выполнять операцию сортировки, и использовать его для всех векторов, которые должны изучаться в совокупности. Функция order позволяет сортировать в порядке следования аргументов – первый аргумент - вектор индексов, который сортируется в порядке возрастания, затем сортировка производится по второму аргументу и т.д.


Слайд 3
Текст слайда:

Пример

> x <- sample(1:5, 20, rep=T)
> y <- sample(1:5, 20, rep=T)
> z <- sample(1:5, 20, rep=T)
> xyz <- rbind(x, y, z)
> dimnames(xyz)[[2]] <- letters[1:20]
> xyz
a b c d e f g h i j k l m n o p q r s t
x 4 4 2 4 3 4 4 1 2 2 5 3 1 5 5 3 4 5 3 4
y 5 5 2 5 2 3 5 4 4 2 4 2 1 4 3 4 4 2 2 2
z 4 5 3 2 4 2 4 5 5 2 4 2 4 5 3 4 3 4 4 3
> o <- order(x, y, z)
> xyz[, o]
m h j c i l e s p t f q d a g b r o k n
x 1 1 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5
y 1 4 2 2 4 2 2 2 4 2 3 4 5 5 5 5 2 3 4 4
z 4 5 2 3 5 2 4 4 4 3 2 3 2 4 4 5 4 3 4 5


Слайд 4
Текст слайда:

Функция sort

Функция sort сортирует вектор или список в возрастающем или убывающем
> sort(x)
[1] 1 1 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5
> sort(x,decreasing=T)
[1] 5 5 5 5 4 4 4 4 4 4 4 3 3 3 3 2 2 2 1 1
Чтобы отсортировать часть вектора, используется аргумент the partial
> sort(x,partial=c(3,4))
[1] 1 1 2 2 3 4 4 4 2 4 5 3 4 5 5 3 4 5 3 4


Слайд 5
Текст слайда:

Функция rank

Чтобы вывести ранг значений вектора, используется функция rank. По умолчанию ранг одинаковых элементов усредняется, но можно использовать другие опции: брать первое значение, случайное значение, максимум или минимум.
x 4 4 2 4 3 4 4 1 2 2 5 3 1 5 5 3 4 5 3 4
> rank(x)
[1] 13.0 13.0 4.0 13.0 7.5 13.0 13.0 1.5 4.0 4.0
[11] 18.5 7.5 1.5 18.5 18.5 7.5 13.0 18.5 7.5 13.0
> rank(x, ties="first") # first occurrence wins
[1] 4 4 2 4 3 4 4 1 2 2 5 3 1 5 5 3 4 5 3 4
> rank(x, ties="random") # ties broken at random
[1] 16 15 5 14 9 12 11 1 3 4 19 6 2 17 18 8 13 20 7 10
> rank(x, ties="min") # typical sports ranking
[1] 10 10 3 10 6 10 10 1 3 3 17 6 1 17 17 6 10 17 6 10


Слайд 6
Текст слайда:

Дата и время

В R есть несколько механизмов для представления даты и времени. Стандартный - это набор функций и объектов POSIXct/POSIXlt .
POSIXct - это численные векторы, каждая компонента которых представляет число секунд с начала 1970 года. Такие объекты подходят для включения в блоки данных. Объекты POSIXlt – это списки, в которых части даты/времени хранятся как отдельные компоненты.


Слайд 7
Текст слайда:

Конверсия из одной формы в другую

Функция as.POSIXlt(obj) преобразует из POSIXct в POSIXlt.
Функция as.POSIXct(obj) преобразует из POSIXlt в POSIXct.
Функция strptime(char,form) генерирует объекты POSIXlt из подходящих строковых векторов, где формат должен быть определен.
Функция format(obj,form) генерирует символьные векторы из объектов POSIXlt или POSIXct, также требуется определение формата.
Функция as.character(obj) aтакже генерирует символьные строковые векторы как и format(,), но только в формате даты/времени стандарта ISO standard time/date.


Слайд 8
Текст слайда:

Примеры

В какой день недели вы родились и сколько дней вы прожили?
> myBday <- strptime("18-Apr-1973", "%d-%b-%Y")
> class(myBday)
[1] "POSIXt" "POSIXlt"
> myBday
[1] "1973-04-18"
> weekdays(myBday)
[1] “Wednesday”
>Sys.time()
[1] "2005-01-19 12:08:12 E. Australia Standard Time“
>Sys.time() – myBday
Time difference of 11599.51 days


Слайд 9
Текст слайда:

Арифметические действия с объектами POSIXt

Допускаются следующие арифметические действия с объектами дата/время (POSIXlt или POSIXct): • obj + number • obj - number • obj1 obj2 • obj1 - obj2 В первых двух случаях number представляет собой число секунд. Если нужно добавить или вычесть дни, работают с произведениями вида 60*60*24. В третьем случае это логический оператор, а результат – логический вектор. В четвертом случае результат – это объект difftime, представляющий собой разницу времен в секундах.
> as.numeric(Sys.time())
[1] 1106100492
> as.numeric(myBday)
[1] 0001837331070
>as.numeric(as.POSIXct(myBday))
[1] 103903200
>as.numeric(Sys.time()) - as.numeric(as.POSIXct(myBday))
[1] 100219729


Слайд 10
Текст слайда:

Таблицы

Иногда удобно табулировать данные (представлять в виде таблиц частот). Это можно сделать с помощью функции table в R. Набор данных quine состоит из 146 строк, описывающих этническую принадлежность (Eth), возраст (Age), пол (Sex), количество пропусков в школе (Days) и их способность к учебе (Lrn). Eth, Sex, Age и Lrn это категориальные переменные, Days – численный вектор. Если мы хотим классифицировать объекты по возрасту, можно сделать следующее:
> attach(quine)
> table(Age)
> Age
Age
F0 F1 F2 F3
27 46 40 33
Если мы хотим узнать распределение по возрасту в соответствии с полом:
> table(Sex,Age) Age
Sex F0 F1 F2 F3
F 10 32 19 19
M 17 14 21 14


Слайд 11
Текст слайда:

Split

Функция split делит данные, заданные вектором x, на группы, определенные фактором f. Эта функция может быть полезной для графического изображения данных.
Если мы хотим получить описание разбиения Days по Sex, можно написать следующий код
> split(Days,Sex)
$F
[1] 3 5 11 24 45 5 6 6 9 13 23 25 32 53 54 5 5 11 17 19 8 13 14 20 47
[26] 48 60 81 2 0 2 3 5 10 14 21 36 40 25 10 11 20 33 5 7 0 1 5 5 5
[51] 5 7 11 15 5 14 6 6 7 28 0 5 14 2 2 3 8 10 12 1 1 9 22 3 3
[76] 5 15 18 22 37

$M
[1] 2 11 14 5 5 13 20 22 6 6 15 7 14 6 32 53 57 14 16 16 17 40 43 46 8
[26] 23 23 28 34 36 38 6 17 67 0 0 2 7 11 12 0 0 5 5 5 11 17 3 4 22
[51] 30 36 8 0 1 5 7 16 27 0 30 10 14 27 41 69

Или графически
> boxplot(split(Days,Sex),ylab="Days Absent")
> library(lattice) # trellis graphics
> trellis.par.set(col.whitebg())
> bwplot(Days ˜ Age | Sex) # implicit split


Слайд 12
Текст слайда:

Графики


Слайд 13
Текст слайда:

Функции with, subset and transform

Эти функции производят операции над объектом или над элементами внутри объекта. Не нужно подключение (attachment) набора данных. These functions operate on an object or elements within an object. • with: выполняет выражения, содержащие данные > with(Cars93,plot(Weight,100/MPG.highway)) • subset: возвращает подмножества векторов или блоков данных, удовлетворяющих определенным требованиям > Vans <- subset(Cars93,Type=="Van") • transform: преобразует элементы объекта > Cars93T <- transform(Cars93,WeightT=Weight/1000)


Слайд 14
Текст слайда:

Векторизованные вычисления

R позволяет выполнять вычисления над целыми векторами/матрицами/блоками данных/списками вместо их отдельных элементов.
Четыре функции: lapply, sapply, tapply, apply • lapply: берет структуру, дает список результатов • sapply: как lapply, но упрощает результат, если это возможно • apply: используется только для массивов • tapply: используется для неровных (ragged) массивов: векторов, которые индексируются одним или несколькими факторами. Эти функции используются для эффективности и удобства.


Слайд 15
Текст слайда:

Функция apply

Эта функция позволяет оперировать последовательными частями массива. Для иллюстрации вычислим среднее каждого столбца набора данных iris: > iris[1:4,] Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa > apply(iris[,-5],2,mean) Sepal.Length Sepal.Width Petal.Length Petal.Width 5.843333 3.057333 3.758000 1.199333


Слайд 16
Текст слайда:

Функция tapply

Неровные массивы представляют собой комбинацию вектора и фактора меток групп, где размеры групп неправильные (irregular). Чтобы применять функции к неровным массивам, применяется tapply, в качестве аргументов которой подставляются объект, список факторов и функция. Проиллюстрируем ее работу на наборе данных quine.
> quine[1:5,]
Eth Sex Age Lrn Days
1 A M F0 SL 2
2 A M F0 SL 11
3 A M F0 SL 14
4 A M F0 AL 5
A M F0 AL 5
Чтобы вычислить среднее число пропусков для каждого возраста, можно использовать функцию tapply.
> tapply(Days,Age,mean)
F0 F1 F2 F3
14.85185 11.15217 21.05000 19.60606
Чтобы выполнить такие вычисления для классов Пол и Возраст, нужно использовать два фактора Sex и Age и функцию list
>tapply(Days,list(Sex,Age),mean)
F0 F1 F2 F3
F 18.70000 12.96875 18.42105 14.00000
M 12.58824 7.00000 23.42857 27.21429


Слайд 17
Текст слайда:

Функции lapply и sapply

lapply и sapply оперируют с компонентами списка или вектора lapply всегда возвращает список list sapply более user-friendly чем lappy, пытается упрощать результат в виде вектора или массива


Слайд 18
Текст слайда:

Импорт и экспорт данных


Слайд 19
Текст слайда:

Чтение данных в R

scan() - низкоуровневое средство чтения
read.table() - для чтения блоков данных из форматированных текстовых файлов
read.fwf() - для чтения файлов данных фиксированной ширины
read.csv() - для чтения блоков данных из файлов с разделенными запятыми переменными
При чтении данных из файлов Excel самый простой метода – сохранение каждого рабочего листа (worksheet ) отдельно в виде csv-файла и использование функции read.csv() для каждого из них
Наилучший способ для прямой связи с файлом Excel – это использование odbc


Слайд 20
Текст слайда:

Низкоуровневая функция ввода scan()

Для чтения численных данных
> vec <- scan()
1: 22 35 1.7 2.5e+01 77
6:
Прочитано 5 элементов
> vec
[1] 22.0 35.0 1.7 25.0 77.0
Два «ввода» обозначают конец чтения данных

Для чтения символов
> chr <- scan(what = "", sep = "\n")
1: This is the first string
2: This is the second
3: and another
4: that’s all we need for now
5:
Прочитано 4 элемента
> chr
[1] "This is the first string"
[2] "This is the second"
[3] "and another"
[4] "that’s all we need for now"


Слайд 21
Текст слайда:

scan() для чтения смешанных данных

> lis <- scan(what = list(flag = "", x = 0, y = 0))
1: a 10 3.6
2: a 20 2.4
3: a 30 1.2
4: b 10 5.4
5: b 20 3.7
6: b 30 2.4
7:
Прочитано 6 записей
> dat <- as.data.frame(lis)
> dat
flag x y
1 a 10 3.6
2 a 20 2.4
3 a 30 1.2
4 b 10 5.4
5 b 20 3.7
6 b 30 2.4


Слайд 22
Текст слайда:

Импорт прямоугольных таблиц read.table()

Эта функция позволяет определять аргумент заголовка, разделители, способ работы с пропущенными значениями и незаполненными или пустыми строками. Эта функция подходит для наборов данных среднего размера, но не подходит для больших численных матриц. Функции read.csv или read.delim также могут использоваться для чтения прямоугольных файлов с разделителями запятыми. Более того, функция read.csv часто является лучшим выбором для чтения разделенных запятыми текстовых файлов, экспортированных из excel.


Слайд 23
Текст слайда:

Пример

> samp1 <- read.csv("samp1.csv")
> samp1[1:3,]
ID Name Prob
1 1 a 0.812
2 2 b 0.982
3 3 c 0.725


Слайд 24
Текст слайда:

Импорт формата с фиксированной шириной read.fwf()

Формат с фиксированной шириной необычен для большинства наборов данных. Обычно они разделены табуляцией или запятыми. Для данного типа формата наряду с разделителем необходимо определить вектор ширины. Функция read.fwfwrite записывает временных файл, разделенный табуляцией, а затем вызывает read.table. Эта функция полезна только для маленьких файлов данных.


Слайд 25
Текст слайда:

Пример

> dat.ff <- tempfile()
> cat(file=dat.ff,"12345678","abcdefgh",sep="\n")
> read.fwf(dat.ff,width=c(2,4,1,1))
V1 V2 V3 V4
1 12 3456 7 8
2 ab cdef g h
> unlink(dat.ff) # clean up afterwards


Слайд 26
Текст слайда:

Редактирование данных

Функции edit и fix позволяют менять файлы данных. Это удобно для маленьких наборов данных и для получения моментального снимка данных на экране. Функция fix позволяет делать изменения, и затем присваивает измененную версию рабочему пространству.
> fix(samp1)
Функция edit вызывает текстовый редактор для объекта, результат изменений – это копия, которая может быть записана в новый объект.
> samp1.new <- edit(samp1)


Слайд 27
Текст слайда:

Импорт бинарных файлов

Бинарные файлы, записанные в других статистических пакетах, могут быть прочитаны в R. Пакет R foreign обеспечивает средства импорта из бинарных файлов EpiInfo, Minitab, S-Plus, SAS, SPSS, Stat and Systat.
read.epiinfo() - чтение из текстовых файлов EpiInfo
read.mtp() – импорт рабочих листов Minitab
read.xport() – чтение файлов SAS в формате TRANSPORT
read.S() – чтение бинарных объектов, созданных в S-PLUS
read.spss() – чтение файлов из SPSS, созданных командами save и export
read.dta() читает бинарные файлы Stata
read.systat() читает прямоугольные файлы, сохраненные в Systat


Слайд 28
Текст слайда:




Слайд 29
Текст слайда:

Чтение больших файлов данных

Есть ограничения на типы файлов, которые R может считывать. Большие файлы с данными могут вызывать проблемы, т.к. R хранит объекты и наборы данных в памяти. Поэтому во время выполнения функции могут храниться несколько копий набора данных. Объекты > 100Mb могут вызывать переполнение памяти. СУБД лучше подходят для извлечения и обобщения данных. ODBC позволяет получать доступ к данным из различных СУБД. Существует несколько пакетов, обеспечивающих разный уровень функциональности: копирование, отбор данных, запросы и доставка. В основном эти пакеты работают с реляционными БД.
RODBC это пакет для работы с Microsoft SQL Server, Access, MySQL (Windows), Oracle, Excel, Dbase и текстовыми файлами. Возможно создание нескольких одновременных соединений путем RODBC.


Слайд 30
Текст слайда:

Пакет RODBC

RODBC позволяет связаться с БД и доставить информацию. Важные функции RODBC включают
Установку соединений с базами данных ODBC – odbcConnect, odbcConnectAccess, odbcConnectDbase, odbcConnectExcel
Просмотр списка таблиц в базе данных ODBC – sqlTables
Чтение таблицы из базы ODBC – sqlFetch
Запросы к БД ODBC и доставка результатов – sqlQuery
Библиотека RODBC позволяет выводить данные из нескольких листов Excel, но названия листов не должны содержать пробелов.


Слайд 31
Текст слайда:

Вывод данных из R

Функция cat является базовой для экспорта данных. Она записывает объекты в файлы или печатает на экране. Функция sink также может использоваться для записи данных в файл.
Функция print печатает объекты и возвращает их.
Функция write записывает вектор или матрицу в файл с определенным числом столбцов.
Для записи матриц или блоков данных рекомендуется использовать функцию write.table, но для очень больших матриц лучше использовать write.matrix (MASS library). Функция write.matrix может записывать матрицы по частям для сокращения объема памяти.


Слайд 32
Текст слайда:

Функция cat

Этой функцией очень удобно пользоваться для печати на экране
> cat("Hello World\n")
Hello World
Также можно записать текст в файл
> cat("Hello World\n",file="output.txt“)


Слайд 33
Текст слайда:

Функция sink

Может использоваться для записи объектов и текста в файл.
> sink("output.txt")
> sample(1:100,100,replace=T)
> letters[1:10]
> sink()


Слайд 34
Текст слайда:

Функция write.table

Пример 1. Создание соединения перед записью
> con <- file("myData.csv", "w+")
> write.table(myData, con, sep = ",")
> close(con)
Пример 2. Запись данных напрямую
> write.table(myData, "myData.txt")


Слайд 35
Текст слайда:

Вывод графики из R

Есть 4 способа для экспорта графики из R.
Функция postscript производит инкапсулированный postscript файл, содержащий рисунок
Это гибкая функция, позволяющая настраивать размер и ориентацию рисунка
Затем рисунок может быть встроен в документ LaTeX с помощью команды includegraphics
> postscript("graph.ps",paper="a4")
> hist(rnorm(10000))
> dev.off()
null device
1
Другие похожие функции, доступные в R: windows, pdf, pictex, png, jpeg, bmp and xfig


Слайд 36
Текст слайда:

Вывод графики из R

2. Более простой, но менее гибкий способ – использование графического окна и сохранение путем File -> Save As. Опции: metafile, postscript, pdf, png, bitmap или jpeg
3. File -> Copy to the clipboard -> as Metafile. Этот способ хорошо подходит для вставки в Word, Excel и Powerpoint.
4. Прямая печать из R с помощью Print


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика