Free Radical Polymerization презентация

Содержание

A. Type of polymerization.  6. 1 Introduction Free-radical polymerization Ionic polymerization Complex coordination polymerization

Слайд 1








Chapter 6. Free Radical Polymerization
6.1 Introduction
6.2 Free Radical Initiators.


6.3 Techniques of Free Radical Polymerization.

6.4 Kinetic and Mechanism of polymerization.

6.5 Stereochemistry of polymerization.

6.6 Polymerization of Dienes

6.7 Monomer Reactivity

6.8 Copolymerization.


Слайд 2A. Type of polymerization.
 6. 1 Introduction
Free-radical polymerization

Ionic polymerization

Complex coordination

polymerization



Слайд 3B. Commercialized free-radical polymerization.


Слайд 46.2 Free Radical Initiators.
 6.2.1 Peroxides and Hydroperoxides

A.

Benzoly peroxide and other peroxides
 
a. Thermal decomposition of BPO.
 

b. Half-life of benzoyloxy radical : 30 min at 100℃

c. Cage effect : confining effect of solvent molecules.



Слайд 5d. Other peroxides.
Diacetyl peroxide        Di-t-butyl peroxide


  Diacetyl peroxide      Di-t-butyl peroxide
                          (half-life:10hours at 120℃)


 6.2.1 Peroxides and Hydroperoxides


Слайд 6e. Promoters : Inducing initiation at lower temperature.
(6.9)
(6.10)
+
+
+
-

 6.2.1 Peroxides and

Hydroperoxides

Слайд 7B. Hydroperoxide
 
a. Thermal decomposition hydroperoxide
 b. Cumyl hydroperoxide.



 6.2.1 Peroxides and Hydroperoxides


Слайд 8
  

A. α,α'-Azobis(isobutyronitrile) (AIBN).
 
a. Decomposition of AIBN.
b. Half-life of

isobutyronitrile radical : 1.3 hours at 80℃.


6.2.2 Azo Compounds.


Слайд 9B. Side reaction : Cage effect.
 
a. Tetramethylsuccinonitrile



b. Ketenimine                



6.2.2 Azo Compounds.


Слайд 10  A. One electron transfer reaction.
 
a.

Making free radical by one electron transfer by redox reaction.
  b. Low-temperature reaction.
 c. Emulsion polymerization.
                                                                                                                      

B. Example of redox system.


6.2.3 Redox Initiators.


Слайд 11
A. Peroxide and Azo compound.
 
Photolysis

and thermalysis.

B. Photolabile initiator.


6.2.4 Photoinitiator


Слайд 12A. Polymerization without initiators.
 
a. Dimer formation by Diels-Alder

reation.

11

12

·

b. Radical formation from dimer.

·


6.2.5 Thermal Polymerization.


Слайд 136.2.6 Electrochemical Polymerization.
A. Polymerization of electrolysis.
  a. Cathode

reaction :
electron transfer to monomer ion forming radical anion (6.22)

b. Anode reaction :
electron transfer to anode forming radical cation (6.23) 
B. Coating metal surfaces with polymers.



Слайд 14 6.3 Techniques of Free Radical Polymerization.


Слайд 15 6.3 Techniques of Free Radical Polymerization.
 6.3.1 Bulk

A. Reactor charges.


 
a. Monomer.
 
b. Initiator (soluble in monomer).
 
B. Problems.
 
a. Heat transfer.

 b. Viscosity.
 
c. Auto-acceleration.



Слайд 16 6.3.2 Suspension.
A. Reactor charges.

 a. Monomer.
 
b. Initiator (soluble

in monomer).
 
c. Water or other liquid.
 
d. Stabilizer: Poly(vinyl alcohol), CMC

B. Vigorously stirring to keep suspension.



Слайд 176.3.3 Solution.
A. Reactor charges.
 
a. Monomer (soluble in

solvent).
 
b. Initiator (soluble in solvent).
 
c. Solvent.

B. Refluxing solution.



Слайд 18 6.3.4 Emulsion.
A. Reactor charges.
 
a. Monomer.
 b. Redox initiator


 c. Soap or emulsifier.
 d. Water.
 e. Others (cf. Table 6.3).

B. Polymerization in swollen micelle.
  Latex products.



Слайд 19
 6.3.4 Emulsion.
TABLE 6.3. Typical Emulsion Polymerization Recipesa
Ingredients, Conditions

Ingredients (parts by

weight)
Water
Butadiene
Styrene
Ethyl acrylate
2-Chloroethyl vinyl ether
p-Divinylbenzene
Soap
Potassium persulfate
1-Dodecanethiol
Sodium pyrophosphate

Conditions
Time
Temperature
Yield

aRecipes from Cooper.23
bSodium lauryl sulfate.

190
70
30
-
-
-
5
0.3
0.5
-


12hr
50oC
65%

Styrene-Buradiene
Copolymer

Polyacrylate
Latex

133
-
-
93
5
2
3b
1
-
0.7


8hr
60oC
~100%


Слайд 206.4 Kinetic and Mechanism of polymerization.
A. Mechanism of free-radical polymerization.


 
a. Initiation.
  
1) Decomposition.
     Initiator → 2R․
  
2) Addition.

(6.25)



Слайд 21b. Propagation.
(6.26)
 1) Head-to-tail orientation : predominant reaction.
      Steric and electronic

effects.
  
2) Examples of not exclusively head-to-tail orientation.

(13-17% of head to head)   (5-6% of head to head)   (19% of head to head)


6.4 Kinetic and Mechanism of polymerization.


Слайд 22 c. Termination.
 
 1) Combination.
(6.27)

Polystyrene radical.
(6.29)

6.4 Kinetic and

Mechanism of polymerization.

Слайд 23 2) Disproportionation.
Poly(methyl methacrylate) radical.
① Repulsion of ester

group.
    ② Easy alpha hydrogen abstraction.

3) Acrylonitrile : Combination virtually exclusively at 60℃.

4) Poly(vinyl acetate) : Disproportionation.


6.4 Kinetic and Mechanism of polymerization.


Слайд 24 B. Kinetic of free radical polymerization.
 

a. Assumption.
 
1) The rates of initiation, propagation, and termination are all different.
  2) Independent of chain length.
  3) Negligible end group.
  4) At steady state, constant radical concentration.
    (steady state assumption)


 b. Initiation (Ri)
              


f : Initiator efficiency.
           


kd : Decomposition rate constant.
  [I] : molar concentration of initiator.
 [M ·] : molar concentration of radical.





Слайд 25 c. Termination rate ( Rt )
     
        

 d. Propagation rate

( Rp )
    
   Steady state assumption.

kt = ktc+ ktd

Ri=Rt


B. Kinetic of free radical polymerization.


Слайд 26e. Average kinetic chain length ( )
ν

B. Kinetic of

free radical polymerization.

Слайд 27 f. Gel effect : Trommsdorff effect, Norris-smith effect.
  
1) Difficult

termination reaction because of viscosity.
  
2) Ease propagation reaction because monomer size is small,
     even though high viscosity.
  
3) Autoacceleration by exotherm of propagation reaction.
  
4) To obtain extraordinary high molecular weight polymer like gel.


B. Kinetic of free radical polymerization.


Слайд 28   by hydrogen abstracting.
   Lowering average kinetic chain length.
 
a. Growing radicals

move to other polymer chain.

b. Backbiting self polymer chain.

 LDPE : branching polymer.

(6.33)


C. Chain transfer reactions : Growing radicals move to other parts


Слайд 29 c. Moving to initiators or monomers.
 d. Moving to solvent.
(6.34)
(6.35)
(6.36)
(6.37)

C.

Chain transfer reactions

Слайд 30e. Moving to chain transfer agent.
         
 

Ct : Chain transfer constant.
    [T] : Concentration of chain transfer agent.
 
f. Telomerization : At high concentration of transfer agent, ktr>kp.
    Low-molecular-weight polymers are obtained.
              (Telomer)


(6.39)


C. Chain transfer reactions


Слайд 31 
a. Copper(I) bypyridyl(bpy) complex: 
 b. TEMPO (18) : 2,2,6,6-tetramethylpiperidinyl-1-oxy.
(6.42)
(6.43)
(6.44)
(6.45)

D.

Leaving free radical polymerization : Atom transfer polymerization.

Слайд 32 c. Synthesis of block copolymers like anionic polymerization.
 d. Monodisperse polymerization

(PI=1.05).

E. Kinetics of Emulsion polymerization.
 
a.     
   
 
N : the number of particles.

 

b.   


6.4 Kinetic and Mechanism of polymerization.


Слайд 336.5 Stereochemistry of polymerization.



A. General consideration.
 
a.

Stereoregular polymerization : Ionic and complex coordination  
   polymerization.

   1) Terminal ion pair : counter ion.
   2) Terminal complex active site.
   3) Low temperature.

 b. Stereo-irregular polymerization : Free-radical polymerization.

   1) No stereoregulating radical terminal group.
   2) Somewhat higher temperature.



Слайд 34B. Factors influencing stereochemistry in free-radical polymerization.
 a. Interaction between the

terminal chain carbon and the
   approaching monomer molecule.

C. Stereoregular free-radical polymerization of PMMA.
  (syndiotatic PMMA)
 
a. Polymerization temperature : below 0℃.
 
b.

(6.48)


6.5 Stereochemistry of polymerization.


Слайд 35 c. Terminal carbon : sp2( planar )
    Penultimate repeating unit :

Bulky ester group.
 
d. Poly(2,4,6-triphenylbenzylmethacrylate)

1) Less syndiotatic than PMMA.
2) More polar effect than steric effect.


6.5 Stereochemistry of polymerization.

19


Слайд 36  6.6.1 Isolated Dienes

A. Crosslinked or cyclopolymerization.
6.6 Polymerization

of Dienes



Слайд 37A. Structure of conjugated Diene monoer.
Isoprene
B. a. 1,2-Addition :

Pendent vinyl group.


 b. Stereochemistry : isotactic, syndiotactic, atactic.

6.6.2 Conjugated Dienes.

23

25



Слайд 38C. 1,4-Addition : Delocalized double bond
 
a.

D. 3,4-Addition
E.

Polymerization reaction and temperature.

24

26

27

29


6.6.2 Conjugated Dienes.


Слайд 39TABLE 6.6 Structure of Free Radical-Initiated Diene Polymersa
polymerization
Temperature (oC)

-20
20
100
233

-20
-5

50
100
257

-46
46
100

Monomer

Butadiene




Isoprene





Chloroprene

cis-1,4 trans-1,4 1,2 3,4

Percent

6
22
28
43

1
7
18
23
12

5
10
13

77
58
51
39

90
82
72
66
77

94
81-86
71

17
20
21
18

5
5
5
5
2

1
2
2.4

-
-
-
-

4
5
5
6
9

0.3
1
2.4

aData from Cooper34 p. 275.


6.6.2 Conjugated Dienes.


Слайд 40F. s-cis and s-trans

6.6.2 Conjugated Dienes.


Слайд 41
A. Thermodynamic feasibility.
 
a. ΔGp = ΔHp - TΔSp


     ΔGp : Gibbs free energy change of polymerization.
     ΔHp : Enthalpy change of polymerization.
     ΔSp : Entropy change of polymerization.
     ΔGp < 0 : favorable free energy of polymerization.
 
b. Values of ΔH and ΔS for several monomers.
 
c. Polypropylene and isobutylene :
   
  ΔG < 0 → unfavorable polymerization.
     because of kinetic feasibility

6.7 Monomer Reactivity



Слайд 42
6.7 Monomer Reactivity


Слайд 43B. Factors of monomer reactivity in free radical polymerization.
 
a.

The stability of the monomer toward addition of a free radical.
 
b. The stability of the monomer radicals.

 c. Order of monomer reactivity.
    Acrylonitrile > Styrene > Vinyl acetate.
 
d. Order of benzoyloxy radical initiation.
    Syrene > Vinyl acetate > Acrylonitrile
    Benzoyloxy radical : Ph14CO2․


6.7 Monomer Reactivity


Слайд 44C. The inverse relationship between monomer stability and
   polymerization rate.

 a.

Vinyl acetate: not Stable monomer but high rate constant.

 b. Steric and polar effects: Not clear-cut generalization.
    Lower rate constant of MMA than MA.
 
c. 1,2 disubstituted monomer difficult to polymerize in free radical.
     Exception: Tetrafluoroethylene.


6.7 Monomer Reactivity


Слайд 45D. Ceiling temperature (Tc)
 
a.
 b. Definition of

ceiling temperature.
  ΔGp = 0 : equal forward and backword reactions.


  c. High Tc : favorable polymerization.
      Low Tc : unfavorable polymerization.
     Exception : α-methylstyrene (Tc=66℃).


6.7 Monomer Reactivity


Слайд 46A. Mechanism of copolymerization.
6.8 Copolymerization.


Слайд 47 a. 
 
b. 
 
c. let,

(reactivity ratio)
 
  steady state assumption.
    
 d. solving
    
  

: Copolymer equation or copolymer composition equation.
d[M1]/d[M2] : the molar ratio of the two monomers in the copolymer
[M1], [M2] : the initial molar concentration of monomers in the
            reaction mixture

B. Kinetics of copolymerization.



and



Слайд 48
a. r1 = r2 = ∞ : Homopolymer.
 

b. r1 = r2 = 0 : Alternating polymer.

 c. r1 = r2 = 1 : Copolymer composition depending on feeding
   monomers in the reaction temperature.
 
d. r1 × r2 = 1 :Ideal copolymerization like ideal liquid vaporization.
 
e. r1 × r2 > 1 : Azotropic copolymerization
(polymer composition not depending on feeding).
 
f. Determination of r1, r2 : Measure copolymer composition by
   NMR or other method at low conversion ( <10% )


C. Significance of reactivity ratio (r1, r2).


Слайд 49
D. Alfrey-price Q-e scheme.


Слайд 50E. Charge transfer complex polymerization(alternating copolymer).
 
a. Styrene

and maleic anhydride(D-A complex).



Слайд 51b.
c.

E. Charge transfer complex polymerization (alternating copolymer).
(6.58)
(6.57)


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика