Теплотехника. Конвективный теплообмен. (Лекция 12) презентация

Содержание

Конвекция – второй элементарный вид распространения тепла, неразрывно связан с переносом самой среды. Поэтому конвекция возможна лишь в жидкостях и газах, частицы которых могут перемещаться. По природе возникновения различают два вида

Слайд 1Конвективный теплообмен
Конвективным теплообменом (теплоотдачей), называется процесс переноса тепла между поверхностью твердого

тела и жидкой средой. При этом перенос тепла осуществляется одновременно действием теплопроводности и конвекции.

Явление теплопроводности в жидкостях, газах, твердых телах, вполне определяются коэффициентом теплопроводности и температурным градиентом


Слайд 2Конвекция – второй элементарный вид распространения тепла, неразрывно связан с переносом

самой среды. Поэтому конвекция возможна лишь в жидкостях и газах, частицы которых могут перемещаться.

По природе возникновения различают два вида движения – свободное и вынужденное.

Конвективный теплообмен


Слайд 3Свободным называется движение, происходящее из-за разности плотностей нагретых и холодных частиц

жидкости в поле силы тяжести. Свободное движение называется также естественной конвекцией.

Вынужденным называется движение, возникающее под действием посторонних возбудителей (насоса, вентилятора, др.).

Конвективный теплообмен


Слайд 4Наряду с вынужденным движением одновременно может развиваться и свободное. Относительное влияние

последнего тем больше, чем больше разность температур в отдельных точках жидкости и чем меньше скорость вынужденного движения.

Интенсивность конвективного теплообмена характеризуется коэффициентом теплоотдачи α, который определяется по эмпирической формуле Ньютона-Рихмана:

Конвективный теплообмен


Слайд 5α - определяется как количество тепла, переданное в 1 времени через

1 поверхности при разности температур между поверхностью и жидкостью в 1 градус:

Формула Ньютона-Рихмана


Слайд 6Как для ламинарного, так и турбулентного режима течения вблизи самой поверхности

применим закон Фурье:


С другой стороны, для этого же элемента поверхности закон Ньютона-Рихмана записывается в виде:

Формула Ньютона-Рихмана


Слайд 7Коэфициент теплоотдачи является функцией формы Ф, размеров l1, l2…, температуры поверхности

нагрева tc, скорости жидкости w, ее температуры tж, физических свойств жидкости – коэффициента теплопроводности λ, теплоемкости ср, вязкости μ и других факторов.

Приравнивая правые части этих уравнений, получаем:

Это уравнение позволяет по известному полю температур в жидкости определить коэффициент теплоотдачи.

Коэффициент теплоотдачи


Слайд 8Дифференциальные уравнения
теплопередачи и теплообмена
Изучить какое-либо явление – установить

зависимости между величинами, характеризующими это явление.

Применяя общие законы физики, ограничиваются установлением связи между переменными (координатами, временем и физ. свойствами), охватывающих лишь небольшой промежуток времени и элементарный объем из всего пространства.


Слайд 9Полученная зависимость является общим диф. уравнением рассматриваемого процесса. После интегрирования получают

аналитическая зависимость между величинами для всей области интегрирования и всего рассматриваемого интервала времени.

Т.к. теплоотдача определяется не только тепловыми, но и гидродинамическими явлениями, то совокупность этих явлений описывается системой дифференциальных уравнений, в которую входят уравнение теплопроводности, уравнение движения и уравнение непрерывности.

Дифференциальные уравнения
теплопередачи и теплообмена


Слайд 10Для общего описания процесса теплообмена используется система дифференциальных уравнений, которая состоит

из:
уравнения теплопроводности Фурье-Кирхгофа (закон сохранения энергии),
уравнения движения Навье-Стокса (второй закон Ньютона),
уравнения непрерывности (закон сохранения массы).
условия однозначности (начальные и граничные условия). Формула Ньютона-Рихмана – пример граничных условий 3-го рода.

Дифференциальные уравнения
теплопередачи и теплообмена


Слайд 11Уравнение Навье-Стокса – есть уравнение движения несжимаемой вязкой жидкости (справедливо как

для ламинарного, так и для турбулентного течения:



где
ν – кинематическая вязкость,
f – векторное поле массовых сил (сил, действующих на каждый элемент вещества).

Уравнение непрерывности для несжимаемых жидкостей:

Уравнение Навье-Стокса


Слайд 12Поэтому большое значение в теории теплообмена приобретает эксперимент.
Одним из средств решения

задачи теории теплообмена является теория подобия, которая по своему существу является теорией эксперимента.

Аналитические решения системы дифференциальных уравнений конвективного теплообмена получены для ограниченного числа простейших задач при введении упрощающих допущений.

Дифференциальные уравнения
теплопередачи и теплообмена


Слайд 13Основы теории подобия
Теория подобия - это учение о подобных явлениях
Геом.

подобные фигуры, обладают тем свойством, что их соответстветствующие углы равны, а сходные стороны пропорциональны, т.е.:

где -линейные размеры одной фигуры;
- сходственные линейные размеры др. фигуры, подобной первой; сl – коэффициент пропорциональности или постоянная геом. подобия.


Слайд 14В общем случае понятие подобия физических явлений сводится к следующим положениям:
а)

Понятие подобия для физ. явлений применимо к явлениям одного и того же рода, качественно одинаковых и аналитически описывается одинаковыми уравнениями как по форме, так и по содержанию.

Если математическое описание 2-х явлений одинаково по форме, но различно по физическому содержанию, то явления называются аналогичными (тепло-, электро-проводности и диффузии).

Основы теории подобия


Слайд 15б) Обязательной предпосылкой подобия физ. явлений должно быть геометрическое подобие (подобные

явления протекают в геометрически подобных системах).

в) При анализе подобных явлений сопоставлять можно только однородные величины и лишь в сходственных точках пространства и в сходные моменты времени.

Однородными наз. такие величины, которые имеют один и тот же физизический смысл и одинаковую размерность.

Основы теории подобия


Слайд 16Сходными точками геометрически подобных систем наз. такие, координаты которых удовлетворяют условию:


Два промежутка времени τ’ и τ” наз. сходственными, если они имеют общее начало отсчета, и связаны τ” = сττ’.

г) Подобие 2-х физических явлений означает подобие всех величин, характеризующих рассматриваемые явления.

Основы теории подобия


Слайд 17Сущность подобия 2-х явлений означает подобие полей одноименных физических величин, определяющих

эти явления.

Постоянные подобия играют центральную роль в теории подобия, т.к. они устанавливают существование особых величин, наз. инвариантами или числами подобия, которые для всех подобных между собой явлений сохраняют одно и то же числовое значение.

Основы теории подобия


Слайд 18Числа подобия являются безразмерными комплексами, составлены из величин, характеризующих явление. Нулевая

размерность является их характерным свойством.

Основные положения теории подобия можно сформулировать в виде трех теорем:

1-ая теорема подобия: подобные между собой процессы имеют одинаковые критерии подобия.

Основы теории подобия


Слайд 192-ая теорема подобия: зависимость между переменными, характеризующими какой-либо процесс, может быть

представлена в виде зависимости между числами подобия К1, К2,...,Кn:

f (К1, К2,...,Кn) = 0.

-уравнение подобия или критериальное уравнение

3-тья теорема подобия: подобны те процессы, условия однозначности которых подобны, и числа, составленные из величин, входящих в условия однозначности, численно одинаковы.

Основы теории подобия


Слайд 20Критерии, составленные только из величин, входящих в условия однозначности, называют определяющими.


Одинаковость чисел, содержащих и другие величины, не входящие в условия однозначности – эти числа называют определяемыми.

Основы теории подобия


Слайд 21Теория подобия позволяет не интегрируя дифференциальные уравнения, получить из них числа

подобия, и используя опытные данные, установить критериальные зависимости, которые справедливы для всех подобных между собой процессов

Общего решения теория подобия не дает, она позволяет лишь обобщить опытные данные в области, ограниченной условиями подобия.

Основы теории подобия


Слайд 22Моделирование процессов
конвективного теплообмена
Моделированием называют замену исследования натурального образца исследованием на

подобной модели.

Правила моделирования вытекают из теории подобия и моделировать можно качественно одинаковые процессы, при этом необходимо соблюдать следующие условия:


Слайд 23- модель и образец должны быть геометрически подобными;
- изменение физических констант

жидкостей во всем объеме модели должно происходить по тому же закону, что в натуре;

- начальные и граничные условия в модели и в образце должны быть пропорциональными.

Одноименные безразмерные определяющие числа подобия должны быть соответственно равны.

Моделирование процессов
конвективного теплообмена


Слайд 24Просто моделировать процессы, в которых физические характеристики сред постоянны.
Если же

переменность этих характеристик существенна, тогда применяют приближенное моделирование.

Пользуются локальным тепловым моделированием, осуществляя подобие не во всем устройстве, а только в том месте, где изучается теплоотдача.

Моделирование процессов
конвективного теплообмена


Слайд 25Метод моделирования отличается от метода аналогий, когда исследование тепловых процессов заменяется

исследованием аналогичных явлений.

При математическом или аналоговом моделировании не требуется физическая и конструктивная идентичность модели и образца, а нужна лишь аналогичность математического описания процессов.

Моделирование процессов
конвективного теплообмена


Слайд 26ПОДОБИЕ ПРОЦЕССОВ КОНВЕКТИВНОГО ТЕПЛООБМЕНА 
Процессы теплообмена при вынужденном движении теплоносителя и при

свободной конвекции протекают по разному (различными оказываются также и числа подобия для этих процессов).

Слайд 27Условия подобия конвективного теплообмена при вынужденном движении теплоносителя.
Подобные процессы теплообмена протекают

в геометрически подобных системах. Необходимой предпосылкой должны быть подобие полей скорости, температуры и давления во входном или начальном сечении таких систем.

Тогда процессы конвект. теплообмена при вынужд. движении будут подобны, если два опред. числа Re и Pr будут одинаковыми.

Подобие процессов
конвективного теплообмена


Слайд 28Re опред. гидромех. подобие течений теплоносителей:
где w0 – обычно средняя скорость

жидкости (газа) в начальном сечении системы; l – характерный геометрический размер системы (диаметр канала, длина пластины и т.д.); v – коэффициент кинематической вязкости теплоносителя.

Условия (а) – условие инвариантности (одинаковости) определяющих чисел. Этим обеспечивается подобие процессов.

Подобие процессов
конвективного теплообмена


Слайд 29Pr – теплофизическая характеристика теплоносителя, составленная лишь из физических параметров:
или
При

равенстве Re условие одинаковости чисел Pr обеспечивает тепловое подобие (подобие полей температурных напоров и тепловых потоков во всем объеме рассм. систем).

По теории подобия: у подобных процессов должны быть одинаковы и определяемые числа подобия.

Подобие процессов
конвективного теплообмена


Слайд 30В процессах конвективного теплообмена в качестве определяемого числа выступает Nu, характеризующий

интенсивность процесса конвективного теплообмена:

где α - коэффициент конвективной теплоотдачи; λ - коэффициент теплопроводности теплоносителя; l – характерный геометрический размер.

Подобие процессов
конвективного теплообмена


Слайд 31Инвариантность определяется числом Nu, т.е.
является следствием установившегося подобия.
Уравнение подобия (или

критериальное уравнение) для процессов конвективного теплообмена при вынужденном движении теплоносителя имеет вид:

Nu = f (Re, Pr).

Подобие процессов
конвективного теплообмена


Слайд 32Условия подобия процессов теплообмена
при естественной конвекции.
Процесс естественной (свободной) конвекции возникает

из-за различия плотностей нагретых и холодных частиц теплоносителя. При этом для большинства теплоносителей зависимость плотности от температуры - линейная:

где β - температурный коэффициент объемного расширения среды; tж - температура теплоносителя; t - температура около поверхности;


Слайд 33Т.к. ρ

равная:

Эта сила вызывает конвект.движение среды.

Необходимой предпосылкой подобия процессов теплообмена при естественной конвекции должны быть подобие температурных полей на поверхности нагрева или охлаждения.

Условия подобия процессов теплообмена
при естественной конвекции.


Слайд 34Стационарные процессы свободной конвекции будут подобны, если два определяющих числа Gr

и Pr будут одинаковыми:

Число Gr характеризует относительную эффективность подъемной силы, вызывающей свободно-конвективное движение среды:

Условия подобия процессов теплообмена
при естественной конвекции.


Слайд 35Число Pr является теплофизической характеристикой теплоносителя:

Это условие обеспечивает подобие процессов

свободной конвекции (подобие температурных напоров, тепловых потоков и скоростей в геометрически подобных системах.

Условия подобия процессов теплообмена
при естественной конвекции.


Слайд 36Число Нуссельта:
Nu = al/λ
Nu характеризует отношение между интенсивностью теплоотдачи и

температурным полем в пограничном слое потока

Условия подобия процессов теплообмена
при естественной конвекции.


Слайд 37Определяемый критерий – Nu (безразмерный коэффициент теплоотдачи) оказывается одним и тем

же в таких системах:

Уравнение подобия (критериальное уравнение) для процессов теплообмена при свободной конвекции имеет вид:

Nu = f (Gr, Pr).

Условия подобия процессов теплообмена
при естественной конвекции.


Слайд 38Можно не решая уравнений, объединить физические величины в безразмерные комплексы и

получить вид безразмерных уравнений с меньшим числом переменных, их решение позволяет находить искомые величины.

Критериальрные уравнения
конвективного теплообмена

Точные критериальные уравнения отыскиваются путем проведения соответствующих экспериментов. Например, в формуле Михеева

где С и n – коэффициенты, определенные экспериментально.


Слайд 39Физические процессы будут подобными:
а) если они одинаковы по своей природе,

т. е. качественно одинаковы и описываются одними и теми же математическими уравнениями;

б) если процессы протекают в геометрически подобных устройствах (системах);

в) если поля всех одноименных физических величин соответственно будут подобны.

Критериальрные уравнения
конвективного теплообмена


Слайд 40Если в качестве масштабов выбрать сходственные геометрические и физические величины, то

в сходственных точках подобных физических полей в сходственные моменты времени безразмерные координаты и безразмерные физические переменные (числа) будут соответственно равны.

Критериальрные уравнения
конвективного теплообмена


Слайд 41Критериальрные уравнения
конвективного теплообмена


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика