Robust non-algebraic Reissner-Mindlin plate finite elements презентация

Study Subject : Locking VS. Stability for R – M thin plates N = 6 x 6 N = (6 x 6) W exact = 0.01160000

Слайд 1

Ilya Yu. Kolesnikov

Geophysical Center of the RAS

Robust Non-Algebraic Reissner-Mindlin Plate Finite Elements


Слайд 2 Study Subject : Locking VS. Stability for R – M

thin plates

N = 6 x 6

N = (6 x 6)

W exact = 0.01160000


C

h

a = 1

Kirchhoff

‘ Lim { 3D ; R - M } ’ = ‘ Kirchhoff model ’

Morgenstern,1959;Gol’denveizer,1965;
Babuska & Pitkaranta,1990.

Reduced / Selective numerical integration, Zienkiewicz et el., 1971, 1976.

Simply Supported
Square Plate






P

Pa / D

2

Over-Stiff FEM equations - Much slow convergence and poor accuracy

C

2

LARGE Stiff W = small

FEM - analysis

Compatible

exact asymptotic

[ 2 x 2 ] Gauss –
Legendre / Exact
integration


a priori
independent



Uniform

Stable

0.01192

0.00000


[ 2 x 2 ] +

Rank Deficiency

[ 1 x 1 ]





A/S rule: “Accuracy x Stability = Constant”

Low-order Algebraic Interpolation

The most “STATIC” area in FEM is Shape Functions of Algebraic type.

First


Слайд 31D, 2D, 3D Non – Algebraic Shape Functions for Arbitrary Number

of Boundary Nodes

NO Internal Nodes


Слайд 4 S1: Scheme of Selective–Reduced Integration

(SR) with decomposition of shear stiffness matrix [ssm]: [2x2]b+[1x1+1x1+1x1+2x2]s for Laplace Operator


















Field Inconsistency &
Excessive-Stiffness =
Delayed Convergence

Only ONE level of the
Energy ( displacement )



2

6

3

4

5

log (a/h)

: EXACT integr.

element stiffness matrix

exact

non-algebraic

[2x2]

0



R – M shear locking problem with DoF:












8-node
FE

4-node Bilinear: [ 2 x 2 ] + [1 x 1 ]

~ 0


[ 2 x 2 ] : Uniform / Stable

0. 200

(Ex.: max = )


How can we control the Energy levels ?


h <<1


1

Non-Stable

to get Accurate/Stable solution: Uniform int. [ 2 x 2 ]

SR

Mesh: 6 x 6



1.192



SR

another
way

1.160

Crime



No Crime

Wc x 100


Quadratic – Serendipity : [ 3 x 3 ] + [ 2 x 2 ]

Need


3D

to Key














Слайд 5x
Shape Control








stiffness matrix control
(slope change of )

1
0

1





+
























Serendipity
Algebraic
Single
OR

+ / -


infinite set of

NO Control

introduce - Shape Functions Variability

A Continuation Method: D.F. Davidenko; V.I. Shalashilin






Слайд 6: Scheme of Full (Uniform) Integration (FI): [2x2] for Helmholtz

Operator


























0

2

3

4

5

6

log (a/h)


Convergence with N increase

Convergence Improvement

exact

Infinite Set of Energy
( displacement )
levels of

Q.: How we can MORE improve solution?


Convergence
from below

wc x 100

1.254

1.273

C - above

the Best / below




ACCURACY




0.200


NO introducing Rank Deficiency &
ill-Conditioning

same coarse mesh

?




Slow


Слайд 7: Multi-Scale Scheme: Slow ( w ) & Fast Full

(Uniform) Integration (MS): [2x2] for Helmholtz Operator




same mesh








2

3

4

5

6

log(a/h)

0

Kirchhoff exact







Scheme Better than Scheme

Slow

Fast



0.2

1.160

1.054



from below

from above

to Single level Selection
- Parametric Study


Infinite Set
of levels


?

“True thin”






Слайд 8 towards choice of Unique & Stable solution

Scheme

Scheme :



wc

0

exact

wc

0

No DCP

may be

What the Energy (displacement) approximating level
is TRUE for THIN plates ?





~ 0

~ 0

Infinite Set of Energy ( displacement ) levels of

Unique Choice of : = ?

plate mechanics




Scheme S1 ( )

DCP – Degenerated / inflexion Critical Point : Structural Stability of Set

Catasrophe / Singularity Theory : Fold Catasrophe

0.011600

8.3

10.7



Wc 0 ( )




DCP – Search

No



No



0

Search
Space


max

min

Reaction to Small Perturbation



Energy level


min



Слайд 9
to solve problem: find ( ‘turn of

RM-straight line up to K-normal’ )




1

0

U

[K]

STABLE


K

RM

ms

t

0

Variational Crime =
energy unbalance
Instability

[ssm] := Singular

DCP



round-off error

continuously



inflexion p.



critical point

inflexion &

ENERGY Consistency of Field functions via APPROXIMATIONS

Shape Functions for Deflection and Rotations




to Select
K - solution
from
R-M family :

URM UK


Kirchhoff case is a member from the Reissner – Mindlin family

a priori independent

Slow varying -

- Fast varying

R - M Energy / Stiffness Parametric family

- control

find




Kirchhoff



another way

&

Problem




APPR

ENER


Fold Catasrophe



contrast

No DCP

P (K) = 0


Seek !

=:Unique

S1( )




Fold

Perturbation






Rank Deficiency


Слайд 10
(i = 1, 2)















interpolating points
control points FEM



Cubic interpolation

of FEM – data

9.2

9.8

Consistency via MultiScale

1



x

y

1



~

~


8 – node Kirchhoff – Reissner – Mindlin thin Plate FE

Uniqueness of Critical Point of Inflexion: – finding

Selection of K – solution from Reissner – Mindlin family

‘ Energy via Deflection ’ & FEM analysis data

simply
supported

K

=

Seeking

C

36 FE

at Center

Compatible




= [ 9.55 ; 9.75 ]







h

Fold Catastrophe

Degenerated

Cr-Point

Reduced Integration

Parametric
Approach


instable



Round – off Error

stable




Consistency

P (K)=0



Rank Deficiency




Слайд 11FEM Stiff Problem of Solid Mechanics : Reissner-Mindlin Thin Plate Bending

– Shear Locking Problem & ROBUSTNESS

Square Plate : a x a x h Simply Supported (SS - soft),
loaded at the Center by a concentrated force P












KRM: Constructed Kirchhoff-Reissner-Mindlin FE with
agreed C0 – deflection and rotations

wcor

Scheme:

s











Mesh: 6 x 6






P

P

8 – node

corner







SS

36 FE

36 FE

Compound Scheme

: Displacement – based FEM


R – Control via Shape Functions OR via Variational Principle

{







8 - node


dispose


Слайд 12 Convergence Improving (Quality Control) Nondimensional

Deflection at with varying (a/h) ratios







K-RM solution: Sch.





stable = + / -

-

+


36 FE

Quality = ( Accuracy + Stability ) + Robustness

Robustness = Stability towards: Round-off error & Problem parameters

+

robust = + / -

+

+

-

Large parameter (Stiff Problem ):


Method Stability : to Zero Energy Modes = Mechanisms

496

2

0.03

relative error %

same mesh : 6 x 6




N





CSR

C


Слайд 13Thin plates with Strongly Connected Boundaries

2
6
3
4
5








S S
C L
C L
S S
S

S

S S

Mixed Boundary Conditions

P

c

Wc

log (a/h)

SR

S3 ( )

Compound

S/Quadr : [ 3x3 ]b + [ 2x2 ]s

S2 : [ 2 x 2 ] = FI

‘ Exact ’

0.0078

0.0075

0.0074

0.0020

0.0007

0.0083

0.0079

0.0078

0.0021











Ref. : Tseitlin A.I., 1971.

*

*

Mesh : 6 x 6


Compound: KRM






SR

8 – node FE

1




locking

N – convergence

N


CSR

inducing

CSR

-


Слайд 14 Thin plates with Strongly – Weakly Connected Boundaries


2
3
4

5

6








0.0155

0.0047












C

P

C

A

A

P

free

SS

clamp

SR

SR

Compound

Compound

0.0069

0.0068

0.00653

0.00651

0.0059

S / Quadr

0.00262

S2

Wc

WA

0.0015

0.00077

- 0.0038

- 0.0043

- 0.0036

- 0.0015


0.00085


- 0.0008

- 0.0005

Ref. : Jiang Z., 1992

1 / 3

1 / 3

1

1


Compound

at Corners

KRM

4

0

log ( a / h )

W

Mesh: 6 x 6

SR






clamp – Free

SS - Free

Point Singular Support

SR


locking

S / Quadr

S2



_

+

CSR

CSR

at centre

Change

inducing Reactions

+

Physical Stability

SS 0


Слайд 15Reissner-Mindlin Thin Plate Bending – the case of Weak Connected boundaries

/ Zero Energy Modes

Mesh: (6x6) of 8-node FE

x

y

F

0

1

1

RM:

K:




0






+

-

mid-edge

Corner


essential

natural




CSR



variational boundary conditions (SS-soft)

the principle of virtual work (displacements)

KRM-FE





RM

K











Torsion of Thin plate : 3 Node – Supported plate,
loaded at the Corner by a concentrated force F




K



Corner



h=0.00001


Слайд 16










corner

1
y
1
0
x






















same
same
No CSR


0
0.5
y
W
0.5
x
y
0.5
W
W
stable




F
CSR
KRM-stabilizing

FE


Oscillations Stabilization




oscillations

robust






CSR


Selective Reduced Integration : Zero Energy Modes

( Boundary Oscillations = Instability )



Compound Scheme
No Locking and ZEM


10 x

= W

Torsion of Thin Plate

exact

h=0.00001


Слайд 17
Trapezoidal Thin Plate : 3 Node – Supported

– Torsion

Instability / Zero Energy Modes & Control by Stabilization

Scheme Selective Reduced Integration

Scheme with 4 Corner Stabilizing FE










KRM FE

Stabilization






= 80

o

= 70

o

= 80

= 70

o

o

w

w

w

w

36 SR FE

( 32 SR + 4 KRM ) FE

b/2

a/b=1

P







ZEM

Corner Shear Reaction

No CSR

Stable

0

y

x

0

0

0.223

0.446

0.341

0.682

b/2

CSRs

P

b/2

+


CSR

inducing sign

-

+

-


CSR


C

C

C

C

Г

Г

Г

Г

С

Г

+



exact

h=0.00001


Слайд 18
3 Point Plate loaded at Center: increasing ZEM & Stabilization







32

SR + 4 K – RM

C

h=0.00001

w

w











0

0

Selective Reduced FEs

ZEM – Amplitude

Bending ZEM



36 SR

Stabilization by K – RM FEs at CORNERS

Torsion ZEM

LARGER

To Corners


36 SR


LIFT

LIFT

SR

VERSUS

1

0.18

0.11



F

F

DOWN


Слайд 19 Reissner – Mindlin Plate Bending: Identification of Torsion




32

SR + 4 K – RM

Corner





36 SR

4 Stabilizing K – RM FEs









LIFT

DOWN


Checking FEM Solution

32 SR

ZEM

- 0.3577

Interpolation





Wc = - 0. 7153





Wc = Wc / 2

W


C

a

P

P

P

P

P

X

Y

EXACT

h=0.00001

Kirchhoff

Kirchhoff

Reproducing

32 SR + 4 K – RM

DoF – Numerical Values

Pure Torsion

Pure Torsion

X

Y

?

!


Слайд 20 Y=0.
X= .000 UZ=1350.9
X=

.083 UZ= 675.4
X= .167 UZ= -.00892
X= .250 UZ= 675.4
X= .333 UZ=1350.9
X= .417 UZ= 675.4
X= .500 UZ= .0000
X= .583 UZ= 675.4
X= .667 UZ=1350.9
X= .750 UZ= 675.4
X= .833 UZ= .00218
X= .917 UZ= 675.4
X= 1.000 UZ=1350.9
X=0.5
Y= .000 UZ= .0000
Y= .083 UZ= 675.4
Y= .167 UZ=1350.9
Y= .250 UZ= 675.4
Y= .333 UZ= -.00197
Y= .417 UZ= 675.4
Y= .500 UZ=1350.9
Y= .583 UZ= 675.4
Y= .667 UZ= -.000018
Y= .750 UZ= 675.4
Y= .833 UZ=1350.9
Y= .917 UZ= 675.4
Y= 1.000 UZ= .0000

4 – Point Singular Thin Plate Bending & Stabilization by RM Shear FEs










36 Selective Reduced

32 SR + 4 RM Shear


Oscillations

Oscillations

SR: NO Stability

h = 0.00001; Mesh: 6 x 6


Free




SS 0


UZ= -.004015 UKT= -.004727
UZ= -.002307
UZ= -.001067
UZ= -.000080
UZ= .000928
UZ= .000453
UZ= .000000 UKT= .000000
UZ= .000453
UZ= .000928
UZ= -.000080
UZ= -.001067
UZ= -.002307
UZ= -.004015 UKT= -.004727
X=0.5
UZ= .000000 UKT= .000000
UZ= .003395
UZ= .006811
UZ= .008794
UZ= .010798
UZ= .012394
UZ= .014011 UKT= .015456
UZ= .012394
UZ= .010798
UZ= .008794
UZ= .006811
UZ= .003395
UZ= .000000 UKT= .000000







32 SR + 4 RM Shear FEs

Singular: Mixed b.c.





Break

X

Y

Discontinuity

1

-

No Oscillations

Point









Jiang & Liu, exact

State of Equilibrium

h = 0.00001 ; Mesh : 6 x 6

Crime


ZEM

Stabilization

Rank Deficiency

SR

Corners

at Sides


WILD

LARGE ZEM


Слайд 21

Appendix: Spectral Non – Algebraic Shape Functions Properties

For Optimal Nodes NO Runge Phenomenon.

For Complete Interpolation Bases NO Gibbs Phenomenon.

For Arbitrary Number of Boundary Nodes NO Internal Nodes.

1D, 2D, 3D Interpolations for Uniformly Spaced Nodes

Expansions into the Shape Functions series




Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика