Geophysical Center of the RAS
Robust Non-Algebraic Reissner-Mindlin Plate Finite Elements
Geophysical Center of the RAS
Robust Non-Algebraic Reissner-Mindlin Plate Finite Elements
N = 6 x 6
N = (6 x 6)
W exact = 0.01160000
C
h
a = 1
Kirchhoff
‘ Lim { 3D ; R - M } ’ = ‘ Kirchhoff model ’
Morgenstern,1959;Gol’denveizer,1965;
Babuska & Pitkaranta,1990.
Reduced / Selective numerical integration, Zienkiewicz et el., 1971, 1976.
Simply Supported
Square Plate
P
Pa / D
2
Over-Stiff FEM equations - Much slow convergence and poor accuracy
C
2
LARGE Stiff W = small
FEM - analysis
Compatible
exact asymptotic
[ 2 x 2 ] Gauss –
Legendre / Exact
integration
a priori
independent
Uniform
Stable
0.01192
0.00000
[ 2 x 2 ] +
Rank Deficiency
[ 1 x 1 ]
A/S rule: “Accuracy x Stability = Constant”
Low-order Algebraic Interpolation
The most “STATIC” area in FEM is Shape Functions of Algebraic type.
First
NO Internal Nodes
Field Inconsistency &
Excessive-Stiffness =
Delayed Convergence
Only ONE level of the
Energy ( displacement )
2
6
3
4
5
log (a/h)
: EXACT integr.
element stiffness matrix
exact
non-algebraic
[2x2]
0
R – M shear locking problem with DoF:
8-node
FE
4-node Bilinear: [ 2 x 2 ] + [1 x 1 ]
~ 0
[ 2 x 2 ] : Uniform / Stable
0. 200
(Ex.: max = )
How can we control the Energy levels ?
h <<1
1
Non-Stable
to get Accurate/Stable solution: Uniform int. [ 2 x 2 ]
SR
Mesh: 6 x 6
1.192
SR
another
way
1.160
Crime
No Crime
Wc x 100
Quadratic – Serendipity : [ 3 x 3 ] + [ 2 x 2 ]
Need
3D
to Key
infinite set of
NO Control
introduce - Shape Functions Variability
A Continuation Method: D.F. Davidenko; V.I. Shalashilin
0
2
3
4
5
6
log (a/h)
Convergence with N increase
Convergence Improvement
exact
Infinite Set of Energy
( displacement )
levels of
Q.: How we can MORE improve solution?
Convergence
from below
wc x 100
1.254
1.273
C - above
the Best / below
ACCURACY
0.200
NO introducing Rank Deficiency &
ill-Conditioning
same coarse mesh
?
Slow
same mesh
2
3
4
5
6
log(a/h)
0
Kirchhoff exact
Scheme Better than Scheme
Slow
Fast
0.2
1.160
1.054
from below
from above
to Single level Selection
- Parametric Study
Infinite Set
of levels
?
“True thin”
Scheme :
wc
0
exact
wc
0
No DCP
may be
What the Energy (displacement) approximating level
is TRUE for THIN plates ?
~ 0
~ 0
Infinite Set of Energy ( displacement ) levels of
Unique Choice of : = ?
plate mechanics
Scheme S1 ( )
DCP – Degenerated / inflexion Critical Point : Structural Stability of Set
Catasrophe / Singularity Theory : Fold Catasrophe
0.011600
8.3
10.7
Wc 0 ( )
DCP – Search
No
No
0
Search
Space
max
min
Reaction to Small Perturbation
Energy level
min
1
0
U
[K]
STABLE
K
RM
ms
t
0
Variational Crime =
energy unbalance
Instability
[ssm] := Singular
DCP
round-off error
continuously
inflexion p.
critical point
inflexion &
ENERGY Consistency of Field functions via APPROXIMATIONS
Shape Functions for Deflection and Rotations
to Select
K - solution
from
R-M family :
URM UK
Kirchhoff case is a member from the Reissner – Mindlin family
a priori independent
Slow varying -
- Fast varying
R - M Energy / Stiffness Parametric family
- control
find
Kirchhoff
another way
&
Problem
APPR
ENER
Fold Catasrophe
contrast
No DCP
P (K) = 0
Seek !
=:Unique
S1( )
Fold
Perturbation
Rank Deficiency
9.2
9.8
Consistency via MultiScale
1
x
y
1
~
~
8 – node Kirchhoff – Reissner – Mindlin thin Plate FE
Uniqueness of Critical Point of Inflexion: – finding
Selection of K – solution from Reissner – Mindlin family
‘ Energy via Deflection ’ & FEM analysis data
simply
supported
K
=
Seeking
C
36 FE
at Center
Compatible
= [ 9.55 ; 9.75 ]
h
Fold Catastrophe
Degenerated
Cr-Point
Reduced Integration
Parametric
Approach
instable
Round – off Error
stable
Consistency
P (K)=0
Rank Deficiency
Square Plate : a x a x h Simply Supported (SS - soft),
loaded at the Center by a concentrated force P
KRM: Constructed Kirchhoff-Reissner-Mindlin FE with
agreed C0 – deflection and rotations
wcor
Scheme:
s
Mesh: 6 x 6
P
P
8 – node
corner
SS
36 FE
36 FE
Compound Scheme
: Displacement – based FEM
R – Control via Shape Functions OR via Variational Principle
{
8 - node
dispose
K-RM solution: Sch.
stable = + / -
-
+
36 FE
Quality = ( Accuracy + Stability ) + Robustness
Robustness = Stability towards: Round-off error & Problem parameters
+
robust = + / -
+
+
-
Large parameter (Stiff Problem ):
Method Stability : to Zero Energy Modes = Mechanisms
496
2
0.03
relative error %
same mesh : 6 x 6
N
CSR
C
S S
Mixed Boundary Conditions
P
c
Wc
log (a/h)
SR
S3 ( )
Compound
S/Quadr : [ 3x3 ]b + [ 2x2 ]s
S2 : [ 2 x 2 ] = FI
‘ Exact ’
0.0078
0.0075
0.0074
0.0020
0.0007
0.0083
0.0079
0.0078
0.0021
Ref. : Tseitlin A.I., 1971.
*
*
Mesh : 6 x 6
Compound: KRM
SR
8 – node FE
1
locking
N – convergence
N
CSR
inducing
CSR
-
6
0.0155
0.0047
C
P
C
A
A
P
free
SS
clamp
SR
SR
Compound
Compound
0.0069
0.0068
0.00653
0.00651
0.0059
S / Quadr
0.00262
S2
Wc
WA
0.0015
0.00077
- 0.0038
- 0.0043
- 0.0036
- 0.0015
0.00085
- 0.0008
- 0.0005
Ref. : Jiang Z., 1992
1 / 3
1 / 3
1
1
Compound
at Corners
KRM
4
0
log ( a / h )
W
Mesh: 6 x 6
SR
clamp – Free
SS - Free
Point Singular Support
SR
locking
S / Quadr
S2
_
+
CSR
CSR
at centre
Change
inducing Reactions
+
Physical Stability
SS 0
Mesh: (6x6) of 8-node FE
x
y
F
0
1
1
RM:
K:
0
+
-
mid-edge
Corner
essential
natural
CSR
variational boundary conditions (SS-soft)
the principle of virtual work (displacements)
KRM-FE
RM
K
Torsion of Thin plate : 3 Node – Supported plate,
loaded at the Corner by a concentrated force F
K
Corner
h=0.00001
Oscillations Stabilization
oscillations
robust
CSR
Selective Reduced Integration : Zero Energy Modes
( Boundary Oscillations = Instability )
Compound Scheme
No Locking and ZEM
10 x
= W
Torsion of Thin Plate
exact
h=0.00001
Instability / Zero Energy Modes & Control by Stabilization
Scheme Selective Reduced Integration
Scheme with 4 Corner Stabilizing FE
KRM FE
Stabilization
= 80
o
= 70
o
= 80
= 70
o
o
w
w
w
w
36 SR FE
( 32 SR + 4 KRM ) FE
b/2
a/b=1
P
ZEM
Corner Shear Reaction
No CSR
Stable
0
y
x
0
0
0.223
0.446
0.341
0.682
b/2
CSRs
P
b/2
+
CSR
inducing sign
-
+
-
CSR
C
C
C
C
Г
Г
Г
Г
С
Г
+
exact
h=0.00001
C
h=0.00001
w
w
0
0
Selective Reduced FEs
ZEM – Amplitude
Bending ZEM
36 SR
Stabilization by K – RM FEs at CORNERS
Torsion ZEM
LARGER
To Corners
36 SR
LIFT
LIFT
SR
VERSUS
1
0.18
0.11
F
F
DOWN
Corner
36 SR
4 Stabilizing K – RM FEs
LIFT
DOWN
Checking FEM Solution
32 SR
ZEM
- 0.3577
Interpolation
Wc = - 0. 7153
Wc = Wc / 2
W
C
a
P
P
P
P
P
X
Y
EXACT
h=0.00001
Kirchhoff
Kirchhoff
Reproducing
32 SR + 4 K – RM
DoF – Numerical Values
Pure Torsion
Pure Torsion
X
Y
?
!
4 – Point Singular Thin Plate Bending & Stabilization by RM Shear FEs
36 Selective Reduced
32 SR + 4 RM Shear
Oscillations
Oscillations
SR: NO Stability
h = 0.00001; Mesh: 6 x 6
Free
SS 0
UZ= -.004015 UKT= -.004727
UZ= -.002307
UZ= -.001067
UZ= -.000080
UZ= .000928
UZ= .000453
UZ= .000000 UKT= .000000
UZ= .000453
UZ= .000928
UZ= -.000080
UZ= -.001067
UZ= -.002307
UZ= -.004015 UKT= -.004727
X=0.5
UZ= .000000 UKT= .000000
UZ= .003395
UZ= .006811
UZ= .008794
UZ= .010798
UZ= .012394
UZ= .014011 UKT= .015456
UZ= .012394
UZ= .010798
UZ= .008794
UZ= .006811
UZ= .003395
UZ= .000000 UKT= .000000
32 SR + 4 RM Shear FEs
Singular: Mixed b.c.
Break
X
Y
Discontinuity
1
-
No Oscillations
Point
Jiang & Liu, exact
State of Equilibrium
h = 0.00001 ; Mesh : 6 x 6
Crime
ZEM
Stabilization
Rank Deficiency
SR
Corners
at Sides
WILD
LARGE ZEM
For Complete Interpolation Bases NO Gibbs Phenomenon.
For Arbitrary Number of Boundary Nodes NO Internal Nodes.
1D, 2D, 3D Interpolations for Uniformly Spaced Nodes
Expansions into the Shape Functions series
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть