Раздел 2. Термодинамика поверхностных явлений презентация

Содержание

Любая термодинамическая система стремиться уменьшить свою поверхностную энергию. Избыточная поверхностная энергия может уменьшиться за счет: уменьшения площади поверхности: сферическая форма капель (сглаживание поверхности), объединение частиц (коагуляция, агрегация,

Слайд 1Раздел II. Термодинамика поверхностных явлений


Слайд 2Любая термодинамическая система стремиться уменьшить свою поверхностную энергию.



Избыточная поверхностная энергия

может уменьшиться за счет:
уменьшения площади поверхности: сферическая форма капель (сглаживание поверхности), объединение частиц (коагуляция, агрегация, коалесценция).
уменьшения поверхностного натяжения: адсорбция, адгезия, смачивание, образование ДЭС;




Слайд 3Поверхностное натяжение
Физический смысл поверхностного натяжения


рМ – внутримолекулярное давление


Слайд 4Энергетическое определение поверхностного натяжения
Поверхностное натяжение (σ) – работа обратимого изотермического процесса,

затраченная на образование единицы площади поверхности раздела фаз:





Силовое определение поверхностного натяжения
Поверхностное натяжение – сила, направленная тангенциально (параллельно) к поверхности и приходящаяся на единицу длины периметра, ограничивающего эту поверхность.
Физическая сущность – поверхностные молекулы стремятся уйти вглубь конденсированной фазы, тем самым, сжимая поверхность.

Слайд 5Термодинамическое определение поверхностного натяжения

При постоянных Т, р, ni, q имеем:


Поверхностное натяжение

- частная производная от любого термодинамического потенциала по площади межфазной поверхности при постоянных соответствующих параметрах.



Слайд 6Единицы измерения поверхностного натяжения
Энергетическая единица измерения – Дж/м2, силовая –

Н/м.

Для воды при 293 К:

Одна размерность легко выводится из другой:

СИ: Дж/м2 = Н∙м/м2 =Н/м


Слайд 7Влияние различных факторов на величину поверхностного натяжения
Химическая природа вещества
Значения поверхностного натяжения

(удельной поверхностной энергии) некоторых веществ на границе с воздухом

* - представлены величины удельной поверхностной энергии


Слайд 8Зависимость поверхностного натяжения от полярности (диэлектрической проницаемости) жидкости
Поверхностное натяжение меньше у

неполярных жидкостей, имеющих слабые межмолекулярные связи, и больше у полярных жидкостей.
Большим поверхностным натяжением обладают вещества, имеющие межмолекулярные водородные связи, например вода.

Слайд 9Температура

Т.к. с ростом температуры расстояние между молекулами увеличивается, то с увеличением

температуры поверхностное натяжение индивидуальных жидкостей уменьшается:


Для большинства неполярных жидкостей
зависимость σ=f(T) близка к линейной и
выражается уравнением:


где: α – температурный коэффициент
поверхностного натяжения


Для многих веществ температурные коэффициенты поверхностного натяжения находятся в пределах от -0,1 до -0,2 мДж/(м2К).





Слайд 10Природа граничащих фаз
Поверхностное натяжение на границе двух жидкостей зависит от

их химической природы (полярности).

Межфазное натяжение на границе воды (ε = 81) с жидкими
органическими веществами.

Правило Ребиндера: чем больше разность полярностей жидкостей, тем больше поверхностное натяжение на границе их раздела.
Правило Антонова (1907): если жидкости ограниченно растворимы друг в друге, то поверхностное натяжение на границе ж1/ж2 равно разности между поверхностными натяжениями взаимно насыщенных жидкостей на границе их с воздухом или с их собственным паром:



Слайд 11Влияние природы и концентрации растворенного вещества на поверхностное натяжение
Поверхностное натяжение раствора

σ отличается от поверхностного натяжения чистого растворителя σ0. Зависимость σ от концентрации растворенного вещества при Т=const называют изотермой поверхностного натяжения.
Для водных растворов различают несколько типов изотерм поверхностного натяжения.

Изотермы поверхностного натяжения:
1 и 2 – поверхностно – инактивные вещества (ПИВ);
3 – поверхностно – активные вещества (ПАВ);
4 – мицеллообразующие (коллоидные) ПАВ.



Слайд 12Межмолекулярные и межфазные взаимодействия


Слайд 13Когезия
Когезия – притяжение атомов или молекул внутри отдельной фазы, обусловленное межмолекулярными

и межатомными взаимодействиями различной природы.

Работа когезии (Wк) - работа, затрачиваемая на разрыв тела по сечению, равному единице площади.


Величину Wк часто называют прочностью на разрыв или когезионной прочностью.


Слайд 14Адгезия
Адгезия – взаимодействие между разнородными конденсированными телами

при их молекулярном контакте.
Причина адгезии – молекулярное притяжение контактирующих веществ или их химическое взаимодействие.
Работа адгезии (WА) – работа, которую необходимо совершить для разделения двух контактирующих фаз.
Работу адгезии рассчитывают по уравнению Дюпре.


Применение адгезии: склеивание материалов, нанесение красок, покрытий и т.д.


Слайд 15Растекание одной жидкости по поверхности другой

Правило Гаркинса

- растекание одной жидкости по поверхности другой происходит, если прилипание между двумя жидкостями больше, чем сцепление молекул растекающейся жидкости (WA > WK).

Коэффициент растекания φ = WА – WК, если φ >0, то происходит растекание, если φ <0, растекание не происходит.

Способность к растеканию зависит от когезии наносимой жидкости.
Например, многие органические вещества растекаются по поверхности воды, а вода, как правило, не растекается на поверхности органических веществ.

Слайд 16Смачивание
Смачивание (адгезия жидкости) – взаимодействие жидкости с твердым или другим жидким

телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом (воздух).

В условиях равновесия: σТГ = σТЖ + σЖГ ·cos θ
Отсюда:

Полученное соотношение называют законом Юнга.


Слайд 17Анализ уравнения Юнга
1. Если σТГ> σТЖ, то cos θ >

0, θ < 90°- краевой угол острый - смачивание. Пример: вода на поверхности металла, покрытого оксидной пленкой.
2. Если σТГ < σТЖ, то cos θ < 0, θ > 90° - краевой угол тупой - несмачивание. Пример: вода на парафине или тефлоне.

3. Если σТГ = σТЖ, то cos θ = 0, θ = 90° - граница между смачиваемостью и несмачиваемостью.
4. Если σТГ – σТЖ = σЖГ, то cos θ = 1 и θ = 0° - полное смачивание (растекание) – капля растекается в тонкую пленку. Пример: ртуть на поверхности свинца, очищенного от оксидной пленки.


Слайд 18Правило: лучше смачивает поверхность та жидкость, которая ближе по полярности к

смачиваемому материалу.

По виду избирательного смачивания все твердые тела делят на две группы:

Гидрофильные (олеофобные) материалы – лучше смачиваются водой, чем неполярными углеводородами: кварц (θ = 0°), малахит (θ = 17°), силикаты, карбонаты, оксиды и гидроксиды металлов.

Гидрофобные (олеофильные) материалы - лучше смачиваются неполярными жидкостями, чем водой: парафин (θ = 106°), тефлон (θ = 120°), графит, уголь.

Слайд 19Связь краевого угла смачивания с работой адгезии

WA= σТГ+ σЖГ – σТЖ

уравнение Дюпре.
Отсюда: σ ТГ – σТЖ= WА– σЖГ

Подставим в уравнение Юнга:




Если WА > σЖГ, то cos θ > 0 , смачивание.

Если WА < σЖГ, то cos θ < 0 , несмачивание.

Твердые тела лучше смачивают неполярные жидкости.


Слайд 20 Влияние шероховатости на смачивание

Поверхность реальных твердых тел шероховатая:
Sш > Sгл
смачивание

(cos θ > 0) шероховатость улучшает смачивание;

несмачивание (cosθ < 0), шероховатость улучшает несмачивание.


где: К – коэффициент шероховатости.

уравнение Венцеля - Дерягина


Слайд 21Флотация
Флотация - метод обогащения полезных ископаемых, основанное на их различной смачиваемости

(этим методом обогащается около 90% руд цветных металлов).

Пример 1.: Порошок кварца и серы высыпали на поверхность воды. Какое явление можно ожидать, если краевой угол смачивания для кварца 0°, а для серы 78°.
Решение: Т.к. для кварца θ = 0° - полное смачивание, то кварц будет полностью смачиваться водой и будет оседать на дно емкости. Для серы θ < 90° - неполное смачивание – порошок серы образует суспензию на поверхности воды.

В случае пенной флотации через водную суспензию измельченной руды барботируют воздух, к пузырькам которого прилипают гидрофобные частицы ценного минерала (чистые металлы или их сульфиды), всплывающие затем на поверхность воды, и с образовавшейся пеной снимаются механически для дальнейшей переработки. Пустая порода (кварц, алюмосиликаты) хорошо смачивается водой и оседает во флотационных машинах.


Слайд 22Особенности искривленной поверхности раздела фаз


Слайд 23 Важное качество дисперсных систем, связанное с раздробленностью – резкое увеличение кривизны

поверхности.

В результате искривления поверхности возникает избыточное внутримолекулярное давление Δр.



Δр - разность давлений внутри искривленной и плоской поверхности конденсированной фазы (капли жидкости).


Слайд 24 Уравнение Лапласа (вывод)

В результате искривления поверхности совершается работа δW, которая

приводит к изменению объема тела на величину dV.




При постоянных Т, р, ni, q в условии равновесия dG = 0:



Тогда:



где: - кривизна поверхности.



Слайд 25Для сферических частиц:
Для частиц цилиндрической
формы:
Для частиц произвольной
формы:







уравнения

Лапласа

Слайд 26Кривизна поверхности может быть положительной и отрицательной.
Если центр окружности находится

внутри тела (выпуклая поверхность), то ds/dV > 0, тогда Δр > 0.
Дополнительное избыточное давление увеличивает внутреннее давление жидкости (сжимает ее).



Если центр окружности находится вне тела (вогнутая поверхность), то ds/dV< 0, тогда Δр < 0.
Дополнительное избыточное давление уменьшает внутреннее давление жидкости (растягивает ее).




Слайд 27Капиллярное поднятие и опускание жидкости
При смачивании (θ < 90°) образуется вогнутый

мениск, жидкость в капилляре поднимается.
Жидкость поднимается тем выше, чем меньше радиус капилляра (h2>h1).

Капиллярное поднятие жидкости

При погружении капилляра в какую-либо жидкость, ее уровень в капилляре меняется.

.


Слайд 28Несмачивание (θ > 90°), образуется выпуклый мениск, уровень жидкости в капилляре

опускается.
Жидкость опускается тем ниже, чем меньше радиус капилляра (h2>h1).
Капиллярная депрессия жидкости

Слайд 29 При равновесии избыточное лапласовское давление равно гидростатическому давлению столба жидкости высотой

h:



, отсюда


Высоту капиллярного поднятия жидкости можно вычислить:


уравнение Жюрена

где: r - радиус кривизны; R – радиус капилляра.


Слайд 30Капиллярным поднятием жидкостей объясняется ряд известных процессов и явлений:
поднятие грунтовых

вод в почвах обеспечивает существование растительного покрова Земли;
пропитка бумаги и тканей – поднятие жидкости в порах;
водонепроницаемость тканей – ткани пропитывают веществами, которые вода не смачивает – капиллярная депрессия;
питание растений (деревьев) – подъем воды из почвы по волокнам древесины;
процессы кровообращения в кровеносных сосудах и т.д.

Слайд 31Влияние кривизны поверхности на давление насыщенного пара
Кривизна поверхности жидкости оказывает влияние

на давление насыщенного пара над этой жидкостью.





Слайд 32Уравнения Томсона – Кельвина (вывод)
Приращение энергии Гиббса в результате искривления поверхности:
При

T=const для индивидуального вещества V=Vm,
где: Vm – мольный объем жидкости.

Тогда:


, или в интегральной форме:



Подставим в уравнение (1) уравнение Лапласа, получим:



для частиц сферической формы

для частиц цилиндрической формы


Слайд 33 С другой стороны в процессе испарения (Т=const) в случае искривленной поверхности:

Или в интегральной форме:


Приравняем уравнение (4) к уравнению (2), для сферической поверхности получим:






Слайд 34Для сферической поверхности:

Аналогично, для цилиндрической поверхности:

Уравнения Томсона – Кельвина


Слайд 35Капиллярная конденсация



При отрицательной кривизне (вогнутая поверхность), давление насыщенного пара будет меньше

чем над плоской:

С уменьшением радиуса кривизны r, давление насыщенного пара будет уменьшаться:

Вывод: чем уже капилляр, тем меньше давление насыщенного пара.

Рекуперация – возвращение газообразных продуктов производства, потерянных в технологическом цикле, вновь в производство: на тонкопористых сорбентах газообразные продукты конденсируются при значительно более низких давлениях, чем на поверхности.





Слайд 36Изотермическая перегонка



При положительной кривизне (выпуклая поверхность) давление насыщенного пара будет больше,

чем над плоской поверхностью:


С уменьшением радиуса кривизны давление насыщенного пара над выпуклой поверхностью будет увеличиваться:

Вывод: давление насыщенного пара над мелкими каплями жидкости будет всегда выше, чем над крупными.

Процесс изотермической перегонки является причиной выпадения атмосферных осадков (дождя); образования сталактитов и сталагмитов, образование вторичных рудных месторождений.






Слайд 37Влияние дисперсности (кривизны поверхности) на различные физико-химические процессы
1. Влияние дисперсности на

реакционную способность веществ
Реакционная способность вещества определяется изменением энергии Гиббса. Приращение энергии Гиббса в результате изменения дисперсности системы ΔGд при Т=соnst запишется:
или в интегральной форме

Для сферической выпуклой поверхности
Тогда:


Величина ΔGд показывает, на сколько изменилась энергия Гиббса в результате раздробленности дисперсной фазы.
Частицы с искривленной поверхностью приобретают дополнительную свободную энергию и обладают повышенной реакционной способностью, что оказывает большое влияние на интенсификацию различных процессов, в том числе и технологических.





Слайд 382. Связь дисперсности с константой равновесия
Степень дисперсности вещества влияет на равновесие

химической реакции. Изменение энергии Гиббса в результате искривления поверхности связано с константой равновесия химической реакции уравнением:


где: - приращение энергии Гиббса, обусловленное дисперсностью, К и Кд – константы равновесия реакции с учетом недиспергированных и диспергированных веществ.
Вывод: повышение дисперсности конечных или исходных веществ приводит к сдвигу равновесия химической реакции и к изменению константы равновесия, т.е. дисперсность влияет на равновесие подобно влиянию температуры и давления.
Пример:
Золото не взаимодействует с соляной кислотой, а коллоидное золото в ней растворяется.
Серебро, практически не растворимое в обычном состоянии, проявляет бактерицидное действие в высокодисперсном состоянии (препараты колларгол, протаргол).




Слайд 393. Влияние дисперсности на температуру фазовых переходов
С изменением дисперсности меняется температура

фазового перехода веществ.
При постоянном давлении изменение энергии Гиббса, связанное с изменением дисперсности в соответствии с объединенными уравнениями первого и второго начал термодинамики запишется:
или в интегральном виде: (1)

где:
Тд – температура фазового перехода вещества в диспергированном состоянии, Т - температура фазового перехода вещества в макросостоянии.
Изменение энергии Гиббса через уравнение Лапласа для сферической поверхности запишется:


Приравняем уравнения (1) и (2), получим:


Из второго начала термодинамики:

Выразим ΔТ :












Слайд 40 Заменим:

на

Тогда получим:


где: ΔТ - изменение температуры при фазовом переходе при диспергировании.
Из уравнения следует, что при ΔНф.п.>0 (плавление и испарение), с уменьшением размера частиц r изменение температуры фазового перехода вещества в диспергируемом и макросостоянии ΔТ увеличивается:



Изменение температуры фазового перехода с изменением дисперсности тем больше, чем выше температура фазового перехода, больше поверхностное натяжение и меньше теплота фазового перехода. Поэтому для тугоплавких веществ наблюдается более сильный эффект понижения температуры плавления с постом дисперсности.






Слайд 41Влияние степени дисперсности на температуру плавления металлов
При увеличении дисперсности вещества температура

его плавления уменьшается, причем очень ощутимо. Это явление используется при получении стекол, керамики, в порошковой металлургии.


Слайд 42Методы определения поверхностного натяжения
Методы бывают: динамические и статические.
Метод наибольшего давления

пузырька газа (метод Ребиндера)
Метод основан на измерении избыточного внутримолекулярного давления Δр, возникающего в жидкости в момент проскока газового пузырька. По уравнению Лапласа: Δр=2σ/r.
Измерения проводят относительным способом: находят наибольшее давление пузырька газа в стандартной жидкости и в исследуемом растворе:





Слайд 43Сталагмометрический метод (метод счета капель)
При вытекании жидкости из капилляра сталагмометра вес

образующейся капли в момент отрыва капли равен силе, стремящейся удержать каплю:


Поверхностное натяжение жидкости будет равно:


Для каждого сталагмометра:


Чтобы исключить характеристики сталагмометра, подсчитывают число капель исследуемой и стандартной жидкостей:




Слайд 44Статические методы
Метод поднятия жидкости в капилляре
В основе лежит уравнение Жюрена:

На

практике θ не известен. В этом случае принимают, что жидкость полностью смачивает стенки капилляра (θ = 0°, cos θ = 1), тогда уравнение Жюрена запишется в виде:

Отсюда поверхностное натяжение жидкости будет равно:



Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика