California Institute of Technology
Electrical Engineering/DSP Lab
ICASSP 2008
California Institute of Technology
Electrical Engineering/DSP Lab
ICASSP 2008
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
τ: delay
ν: Doppler
τ: delay
ν: Doppler
Radar ambiguity
function
τ: delay
ν: Doppler
Radar ambiguity
function
Ambiguity function characterizes the Doppler and range resolution.
τ: delay
ν: Doppler
Matched filter
output
τ
ν
target 2 (τ2,ν2)
target 1 (τ1,ν1)
Multiple targets
(τk,νk)
τ
ν
target 2 (τ2,ν2)
target 1 (τ1,ν1)
Multiple targets
(τk,νk)
τ
ν
target 2 (τ2,ν2)
target 1 (τ1,ν1)
Ambiguity function
τ
ν
target 2 (τ2,ν2)
target 1 (τ1,ν1)
Ambiguity function
τ
ν
τ
ν
τ
ν
τ
ν
SIMO radar (Traditional)
w2φ(τ)
w1φ(τ)
w0φ(τ)
Advantages
Better spatial resolution [Bliss & Forsythe 03]
Flexible transmit beampattern design [Fuhrmann & San Antonio 04]
Improved parameter identifiability [Li et al. 07]
u0(t)
u1(t)
uM-1(t)
…
(τ,ν,f)
TX
τ:delay
ν:Doppler
f: Spatial freq.
dT
…
…
MF
…
MF
…
MF
…
(τ,ν,f)
(τ,ν,f)
TX
RX
τ:delay
ν:Doppler
f: Spatial freq.
u0(t)
u1(t)
uM-1(t)
dT
dR
…
…
MF
…
MF
…
MF
…
(τ,ν,f)
(τ,ν,f)
TX
RX
τ:delay
ν:Doppler
f: Spatial freq.
u0(t)
u1(t)
uM-1(t)
dT
dR
…
…
MF
…
MF
…
MF
…
(τ,ν,f)
(τ,ν,f)
Matched filter output
TX
RX
τ:delay
ν:Doppler
f: Spatial freq.
u0(t)
u1(t)
uM-1(t)
dT
dR
Matched filter output
Receiver beamforming
τ:delay
ν:Doppler
f: Spatial freq.
um(t): m-th waveform
xm: m-th antenna location
n: receiving antenna index
Matched filter output
Receiver beamforming
τ:delay
ν:Doppler
f: Spatial freq.
um(t): m-th waveform
xm: m-th antenna location
n: receiving antenna index
Cross ambiguity function
Matched filter output
Receiver beamforming
[San Antonio et al. 07]
τ:delay
ν:Doppler
f: Spatial freq.
um(t): m-th waveform
xm: m-th antenna location
n: receiving antenna index
MIMO ambiguity function
Ambiguity function:
Signal component:
Ambiguity function:
Signal component:
For orthogonal waveforms,
Ambiguity function:
Signal component:
For orthogonal waveforms,
If the waveforms are orthogonal, the signal component will be a constant for all angle.
For orthogonal waveforms,
For general waveforms,
For orthogonal waveforms,
If is integer,
For general waveforms,
dT is the spacing between the transmitting antennas
The integration of the signal component is a constant if dT is a multiple of the wavelength.
For orthogonal waveforms,
If is integer,
For the general case,
For general waveforms,
dT is the spacing between the transmitting antennas
In general, the integration of the signal component is confined.
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
Parserval relation
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
The energy of the cross ambiguity function is a constant.
MIMO ambiguity function:
Energy of the ambiguity function
MIMO ambiguity function:
Energy of the ambiguity function
dT is the spacing between the transmitting antennas
MIMO ambiguity function:
Energy of the ambiguity function
If dT is a multiple of the wavelength, we can apply Parserval relation for 2D DFT.
dT is the spacing between the transmitting antennas
MIMO ambiguity function:
Energy of the ambiguity function
Cross ambiguity function has constant energy
dT is the spacing between the transmitting antennas
If dT is a multiple of the wavelength,
If dT is a multiple of the wavelength, the energy of the MIMO ambiguity function is a constant.
dT is the spacing between the transmitting antennas
Energy of the MIMO ambiguity function
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
dT is the spacing between the transmitting antennas
Energy of the MIMO ambiguity function
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
In general, the energy of the MIMO ambiguity function is confined in a certain range.
dT is the spacing between the transmitting antennas
Energy of the MIMO ambiguity function
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
dT is the spacing between the transmitting antennas
Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008
It suffices to show only half of the ambiguity function (τ>0).
Shear off
ν
ν
Shear off
For orthogonal waveforms,
If the waveforms are orthogonal, the signal component will be a constant for all angle.
If is integer,
For general waveforms,
The integration of the signal component is a constant if dT is a multiple of the wavelength.
dT is the spacing between the transmitting antennas
For the general case,
In general, the integration of the signal component is confined in a certain range.
dT is the spacing between the transmitting antennas
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть