1. EMP (Electron Microprobe) - ЭМА (Электронный Микроанализатор) первичный пучок: электроны; вторичный пучок: электроны (анализ тока);
2. AES (Auger Electron Spectroscopy) - ЭОС (Электронная Оже-спектроскопия) первичный пучок: электроны (20-5000 эВ); вторичный пучок: электроны (анализ энергии);
3. ESCA (Electron Spectroscopy for Chemical Analysis) - ЭСХА (Электронная Спектроскопия для хим. анализа) первичный пучок: фотоны Х; вторичный пучок: электроны (анализ энергии);
4. SIMS (Secondary Ion Mass Spectrometry) - ВИМС (Вторичная Ионная Масс-спектрометрия) первичный пучок: ионы; вторичный пучок: ионы (анализ массы);
5. ISS (Ion Scattering Spectrometry) - СПРИ (Спектрометрия рассеявшихся ионов) первичный пучок: ионы; вторичный пучок: ионы (анализ энергии);
From down left, according clock wise rotation : 1- detector of the secondary ions; 2 -searched wafer -; 3- secondary ions mass-spectrometer; 4- electron gun for Auger analysis; 5- X-ray source; 6- energy analyzer; 7- ion gun; 8- ultra violet source; 9- micro focus electron gun; 10- electron gun; 11- Faraday cup.
При времяпролётной масс-спектрометрии (TOF SIMS) исследуемая поверхность образца бомбардируется импульсным пучком первичных ионов. В результате такого воздействия ионы в атомарном и молекулярном состояниях эмитируют с внешних слоёв поверхности. Их масса определяется временем, за которое они проходят путь от поверхности до детекторного приёмника. Этот процесс длится до тех пор, пока не будет получен полный спектр с высоким динамическим диапазоном.
ЭОП поколения 2+ с параллельным переносом электронного изображения с фотокатода на МКП и с МКП на экран в электростатическом поле.
1-стекловолоконная или стеклянная пластина ВОП; 2-многощелочной фотокатод; 3-МКП (входная поверхность); 4- МКП (выходная поверхность); 5-катодолюминесцентный экран; 6-стекловолоконный выходной элемент; 7-метал-локерамический корпус; 8-индеевое уплотнение.
История развития механических вакуумных насосов.
Первый (поршневой) вакуумный насос.
1
2
3
Подача балластного газа
содержащем конденсирующиеся пары за счет использования газобалластного устройства, напускающего газ в область переноса, где создаётся давление: Рпер=Рвп+Рбал
Тогда степень сжатия газов (и паров ) в насосе: n = (Рвып =Ратм) / Рвп+Рбал (1)
Поскольку необходимо, чтобы пары не конденсировались в области сжатия, требуется обеспечить:
n < Р наc/Рвп (2),
тогда из уравнений (1) и (2) мы определяем требуемое давление балластного газа:
Рбал >= Рвп Ратм /Рнас– Рвп
Цифрами обозначены: 1-область всасывания, 2-область переноса, 3-область сжатия
.
Главная идея молекулярного насоса - придание всем молекулам откачиваемого газа движущимся в произвольных направлениях дополнительной составляющей скорости в направлении к выпускному патрубку. Принцип работы такого насоса (насоса Геде) иллюстрируется рис :
1-всасывающий патрубок,
2- выхлопной патрубок,
3- ротор
откуда требуемая скорость ротора :
об/мин
Такая скорость обеспечит заметное отклонение молекул и заметный эффект откачки
∅95×134
S 68 л/с
Рпред 10-9 Па
∅97×113
S 30 л/с
Рпред 10-9 Па
PADT TMP
.
.
.
электрод
V =100 см3 , m =100 г
C Sin(ωt)
C Cos(ω t)
пьезокольцо
электрод
Откачивающая камера
C Cos(ω t)
C Sin(ωt)
статоры
.
мембрана пьезопривода
мембраны
.
нагреватель
Капиллярная часть
Соединительная часть
уплотнение
.
Процесс развития насосов привел к возвращению поршневых насосов, только на новой ступени, В 80-х гг. 20 в. специалистами ОАО”ВакуумМаш” в Казани и ISLAND SCIENTIFIC LTDVacuum Equipment создан безмаслянный вакуумный механический насос насос на основе полимеров
Первоначально использовался для регенерации атмосферы в рабочих помещениях орбитальных станций. Сейчас используется как перспективный безмаслянный вакуумный механический насос.
.
ISLAND SCIENTIFIC LTD
Reply to:Unit 9Ventnor
Industrial EstateStation RoadVentnor
Isle of Wight
PO38 1DXEngland
Tel No: (0) 1983 855822
Fax No: (0) 1983 852146Vacuum Equipment,
Used and Reconditioned for Technology, Industry,
Research and EducationE-Mail
Address: sales@island-scientific.co.uk
Web Site: http://www.island-scientific.co.uk
1 - впускной патрубок,
2 - корпус,
3 - пластины,
4 - ротор,
5 - выпускной патрубок,
6 – выпускной (шариковый клапан),
7 – масло,
8 – пружина между пластинами
Рабочие зоны насоса :
I – область всасывания,
II – область переноса,
III – область сжатия.
“Геометрическая” быстрота откачки (измеряемая на входном отверстии статора) составит: Sг=2V1*n/60 [м3*с-1] где: V1- максимальный объем всасывающей области, м3, n – частота вращения ротора, с-1; D – диаметр статора, м; d – диаметр ротора, м ; W – ширина ротора (статора), м
(Частота вращения роторов составляет 1500 – 4000 об/мин или n25-70 с-1). Суммарный поток газа, откачиваемый насосом: Q = Q пр – Q обр [м3*Па/с], где Q пр ,Q обр – прямой и обратный потоки, соответственно.
Это выражение можно записать более подробно:
[м3*Па/с] ,где P,Pобр – впускное и обратное давление насоса соответственно, Па Uδ – суммарная проводимость зазоров (между роторами и между корпусом и роторами), которые определяют обратный поток, м3*с-1
1- охлаждаемая водой ловушка – колпачок, которая уменьшает обратный (в сторону вакуумной камеры, уменьшая при этом скорость откачки насоса;
2- Центральный паропровод, в который из
кипятильника попадают только тяжёлые фракции масла с меньшим давлением насыщающих паров);
3- Инжекторное прямоточное сопло;
4- Козырёк внутри наружной трубы паропровода, для отражения капель при кипячении масла;
5- Днище кипятильника, не допускающее перегрева свыше 2400С, чтобы избежать образования лёгких фракций, не улавливаемых ловушкой;
6-Нагреватель (печь);
7- Выпускной патрубок;
8- Форвакуумная ловушка – лабиринт, уменьш. потери масла.
Здесь «вязкостный» перенос,
поэтому нет охлаждения
Здесь «вязкостный» перенос газа,
поэтому нет охлаждения корпса
Здесь «вязкостный» перенос, ( нет охлаждения)
Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть