Fibrous proteins and their functions. Membrane proteins and their functions презентация

Globular proteins Fibrous proteins H-bonds (NH:::OC) & hydrophobic forces Membrane proteins

Слайд 1
PROTEIN PHYSICS

LECTURES 11-12
- Fibrous proteins and their functions
- Membrane proteins and

their functions

- Fibrous proteins: building blocks
- Membrane proteins: transmitters


Слайд 2
Globular proteins
Fibrous proteins
H-bonds (NH:::OC) & hydrophobic forces
Membrane
proteins


Слайд 3
Fibrous proteins: regular building blocks
____________________________________
Here, we will not consider fibrous proteins


made of globules (actin, etc.)

β


α


collagen








Слайд 4
Fibrous proteins: regular building blocks
β


α


collagen


Слайд 5
Silk fibroin
×~50
β

4.8A


Слайд 6
α-helical
coiled-
coil


Слайд 7Francis Harry Compton Crick (1916 – 2004)
Nobel Prize 1962
for DNA structure, 1953

Coiled coil structure: F. Crick, 1952

C. Chothia, M. Levitt, D. Richardson, 1977


Слайд 8
α-helix packing


Слайд 9collagen triple helix: 3 chains ≈ [Gly-X-Pro]≈500


Слайд 10PRO (φ = -70o)
Before PRO
PolyPRO II
PolyPRO II


Слайд 11Collagen: assisted
folding


Слайд 12Kuru: a mysterious disease, later demonstrated to be infectious prion disease.

Daniel

Carleton Gajdusek (1923 –2008)
Baruch Samuel Blumberg (1925 – 2011)
Nobel Prize 1976

PRION: PROtein and Infection

Stanley Benjamin Prusiner, 1942
Nobel Prize 1997

Studies of amyloid formation

Christopher Martin Dobson, 1949
Royal Medal 2009


Слайд 13
β
______
NMR


Слайд 14
Lu J.X., Qiang W., Yau W.M., Schwieters C.D., Meredith S.C., Tycko

R.
Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue.
Cell 154:1257-1268 (2013) .



Lührs T., Ritter C., Adrian M., Riek-Loher D., Bohrmann B., Döbeli H., Schubert D., Riek R.
3D structure of Alzheimer's
amyloid-beta(1-42) fibrils.
PNAS 102:17342-17347 (2005) .

VARIABILITY
OF
STRUCTURES


Слайд 15
β
_____
X-RAY


Слайд 17
Growth of
amyloids
Dovidchenko N.V., Finkelstein A.V., Galzitskaya O.V. 2014.
How to determine

the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag-time of aggregation. I. Modeling the amyloid photofibril formation.
J. Phys. Chem. B,, 118:1189-1197.

LINEAR
GROWTH
NO LAG

EXPONENTIAL
GROWTH
VERY LARGE LAG



Different
relative
lag-period



Слайд 18 Oligomers

Protofibrils Mature amyloid fibrils

Relini A., Marano N., Gliozzi A. 2014.
Misfolding of amyloidogenic proteins and their interactions with membranes
Biomolecules, 4, 20-55 .

Atomic force microscopy


Слайд 19Elastin:

Matrix protein.
Short repeats.
Poor secondary structure.
Chains are linked by

chemically
modified Lys residues.
Like in rubber.

Natively non-structured fibrous proteins:


Слайд 20
H-bonds & hydrophobics
Membrane proteins: transmitters
____
heads (polar)
tails
tails
heads (polar)


Слайд 21



H+
strong
binding
H+

inside
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+
H+

weak binding



H+
strong
binding

stable
state

Transport

of
proton
H+


Bacteriorodopsin-Lys-retinal

from inside

membrane

Subramaniam & Henderson, Nature 406, 653 (2000)

Lys

Ly





Bacteriorodopsin (α) with retinal:
the simplest transporter machine with a light-induced conformational change




retinal



Слайд 22Porin
Transport of polar molecules
β


Слайд 23Membrane protein in vivo:
Folding is assisted by “directing factors” -

chaperones

Слайд 24MANY OF SIMPLE MEMBRANE PROTEINS REFOLD IN VITRO
IN THE PRESENCE OF

PHOSPHOLIPID VESICLES OR SURFACTANT MICELLES

COLLAPSED STATE: MIX OF COIL, α, β

ASSOSIATES WITH LIPID VESICLES, β

DEEPER PENETRATION INTO LIPIDS

FULLY FOLDED

INDEPENDENT α-HELICES

ASSEMBLE IN LIPID TO FULLY FOLDED




DIFFICULT TO STUDY:
DENATURED STATES OF MEMBRANE PROTEINS ARE DIVERSE & COMPLICATED


Слайд 25Pore in membrane: SELECTIVITY

Free energy of a charge in the non-charged

non-polar pore:

~ q2 / [(εMEMBR εWATER )1/2 rPORE] ~
~ 20 kcal/mol / rPORE(Å)

+


Слайд 26Photo-
synthetic
center
Robert Huber, 1937.
Nobel prize 1988


Слайд 27Pigments
in photo-
synthetic
center:
Electron
transfer







chlorophyll
?
? Light
?


Слайд 28Tunneling

P(X) ~ 10-X(Å)
T-independent
Frequency of vibrations (attacks):
f ~ 1015/sec
Successful attacks:
fSUCCS.(x) ~ P(x)•f,

e.g.:

fSUCCS.(5Å) ~ 10-5+15 ~
~ 1010/sec

Atom ≈ 1Å ⇒ Attenuation of
electron density:


~

V = ±|V|


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика