Lecture # 09. Inputs and Production Functions презентация

Содержание

Outline The Production Function Marginal and Average Products Isoquants Marginal Rate of Technical Substitution Returns to Scale Some Special Functional Forms Technological Progress

Слайд 1
Lecture # 09


Inputs and Production Functions


Lecturer: Martin Paredes


Слайд 2Outline
The Production Function
Marginal and Average Products
Isoquants
Marginal Rate of Technical Substitution
Returns to

Scale
Some Special Functional Forms
Technological Progress

Слайд 3Definitions
Inputs or factors of production are productive resources that firms use

to manufacture goods and services.
Example: labor, land, capital equipment…
The firm’s output is the amount of goods and services produced by the firm.

Слайд 4Definitions
Production transforms a set of inputs into a set of outputs
Technology

determines the quantity of output that is feasible to attain for a given set of inputs.



Слайд 5Definitions
The production function tells us the maximum possible output that can

be attained by the firm for any given quantity of inputs.

Q = F(L,K,T,M,…)

Слайд 6Definitions
A technically efficient firm is attaining the maximum possible output from

its inputs (using whatever technology is appropriate)
The firm’s production set is the set of all feasible points, including:
The production function (efficient point)
The inefficient points below the production function

Слайд 7Example: The Production Function and Technical Efficiency
L
Q

C


Слайд 8Example: The Production Function and Technical Efficiency
L
Q


C
D


Слайд 9Example: The Production Function and Technical Efficiency
Q = f(L)
L
Q


C
D
Production Function


Слайд 10Example: The Production Function and Technical Efficiency
Q = f(L)
L
Q




C
D
A
B
Production Function


Слайд 11
Example: The Production Function and Technical Efficiency
Q = f(L)
L
Q




C
D
A
B
Production Set
Production

Function

Слайд 12Notes:
The variables in the production function are flows (amount of input

per unit of time), not stocks (the absolute quantity of the input).
Capital refers to physical capital (goods that are themselves produced goods) and not financial capital (money required to start or maintain production).

Слайд 13Comparison between production function and utility function


Слайд 14Comparison between production function and utility function


Слайд 15Marginal Product
Definition: The marginal product of an input is the change

in output that results from a small change in an input

E.g.: MPL = ∂Q MPK = ∂Q
∂L ∂K

It assumes the levels of all other inputs are held constant.

Слайд 16Example: Suppose Q = K0.5L0.5

Then: MPL = ∂Q = 0.5 K0.5

∂L L0.5

MPK = ∂Q = 0.5 L0.5
∂K K0.5

Marginal Product


Слайд 17Average Product
Definition: The average product of an input is equal to

the total output to be produced divided by the quantity of the input that is used in its production

E.g.: APL = Q APK = Q
L K


Слайд 18Example: Suppose Q = K0.5L0.5

Then: APL = Q = K0.5L0.5 =

K0.5
L L L0.5

APK = Q = K0.5L0.5 = L0.5
K K K0.5

Average Product


Слайд 19Law of Diminishing Marginal Returns
Definition: The law of diminishing marginal returns

states that the marginal product (eventually) declines as the quantity used of a single input increases.


Слайд 20Q
L


Q= F(L,K0)
Example: Total and Marginal Product


Слайд 21Q
L
MPL maximized


Q= F(L,K0)
Example: Total and Marginal Product
Increasing marginal returns
Diminishing marginal returns


Слайд 22Q
L


MPL = 0 when
TP maximized
Q= F(L,K0)
Example: Total and Marginal Product
Diminishing total

returns

Increasing total returns


Слайд 23Example: Total and Marginal Product



L
MPL
Q
L
MPL maximized
TPL maximized where
MPL is zero. TPL

falls
where MPL is negative;
TPL rises where MPL is
positive.

Слайд 24Marginal and Average Products
There is a systematic relationship between average product

and marginal product.
This relationship holds for any comparison between any marginal magnitude with the average magnitude.



Слайд 25Marginal and Average Products
When marginal product is greater than average product,

average product is increasing.
E.g., if MPL > APL , APL increases in L.
When marginal product is less than average product, average product is decreasing.
E.g., if MPL < APL, APL decreases in L.


Слайд 26Example: Average and Marginal Products


L
APL
MPL
MPL maximized
APL maximized


Слайд 27Example: Total, Average and Marginal Products




L
APL
MPL
Q
L
MPL maximized
APL maximized


Слайд 28Isoquants
Definition: An isoquant is a representation of all the combinations of

inputs (labor and capital) that allow that firm to produce a given quantity of output.

Слайд 29Example: Isoquants
L
K
Q = 10

0
Slope=dK/dL
L


Слайд 30L
Q = 10
Q = 20

All combinations of (L,K) along the
isoquant produce

20 units of output.

0

Slope=dK/dL

K

Example: Isoquants


Слайд 31Isoquants
Example: Suppose Q = K0.5L0.5

For Q = 20 => 20 =

K0.5L0.5
=> 400 = KL
=> K = 400/L

For Q = Q0 => K = (Q0)2 /L


Слайд 32Definition: The marginal rate of technical substitution measures the rate at

which the firm can substitute a little more of an input for a little less of another input, in order to produce the same output as before.

Marginal Rate Of Technical Substitution


Слайд 33Marginal Rate Of Technical Substitution
Alternative Definition : It is the

negative of the slope of the isoquant:
MRTSL,K = — dK (for a constant level of
dL output)

Слайд 34Marginal Product and the Marginal Rate of Technical Substitution

We can

express the MRTS as a ratio of the marginal products of the inputs in that basket
Using differentials, along a particular isoquant:
MPL . dL + MPK . dK = dQ = 0
Solving:
MPL = _ dK = MRTSL,K
MPK dL

Слайд 35Marginal Product and the Marginal Rate of Technical Substitution

Notes:
If we

have diminishing marginal returns, we also have a diminishing marginal rate of technical substitution.
In other words, the marginal rate of technical substitution of labour for capital diminishes as the quantity of labour increases along an isoquant.

Слайд 36Marginal Product and the Marginal Rate of Technical Substitution

Notes:
If both

marginal products are positive, the slope of the isoquant is negative
For many production functions, marginal products eventually become negative. Then:
MRTS < 0
We reach an uneconomic region of production

Слайд 37Example: The Economic and the Uneconomic Regions of Production
L
K
Q =

10

Q = 20


0

Isoquants


Слайд 38Example: The Economic and the Uneconomic Regions of Production
L
K
Q =

10

Q = 20

0



B

A


Слайд 39Example: The Economic and the Uneconomic Regions of Production
L
K
Q =

10

Q = 20

0

MPL < 0



B

A


Слайд 40Example: The Economic and the Uneconomic Regions of Production
L
K
Q =

10

Q = 20

0

MPK < 0

MPL < 0



B

A


Слайд 41

Example: The Economic and the Uneconomic Regions of Production
L
K
Q =

10

Q = 20

0

MPK < 0

MPL < 0



B

A

Uneconomic Region


Слайд 42


Example: The Economic and the Uneconomic Regions of Production
L
K
Q =

10

Q = 20

0

MPK < 0

MPL < 0



B

A

Uneconomic Region

Economic Region


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика