Protein structure at action: bind transform release презентация

Содержание

Слайд 1
PROTEIN PHYSICS

LECTURE 24-25
PROTEIN STRUCTURE AT ACTION:

BIND ? TRANSFORM ? RELEASE


Слайд 2BIND: repressors
α- turn - α


Слайд 3DNA & RNA
BINDING
Zn-
fingers
Leu-zipper


Слайд 4-BINDING-INDUCED DEFORMATION
MAKES REPRESSOR ACTIVE, and IT BINDS TO DNA
BIND

? ? RELEASE: REPRESSOR

Слайд 5Immunoglobulin


Слайд 6Standard positions of active sites in protein folds


Слайд 7There are some
with catalytic
(Ser-protease) site


Слайд 8Preferential binding of TS: RIGID enzyme
Catalysis: stabilization of the transition state

(TS)

Theory: Pauling & Holden

BIND ? TRANSFORM ? RELEASE


Слайд 9Catalysis: stabilization of the transition state (TS)

Theory: Pauling & Holden
Experimental verification:

Fersht

______

__________

P

reputed
TS





Слайд 10Catalysis: stabilization of the transition state (TS)

Theory: Pauling & Holden
Experimental verification:

Fersht

______

__________

P

reputed
TS



/

/

/

/

This
protein
engineering
reduces
the rate
by 1000000

Preferential
binding
of TS:
RIGID
enzyme


Слайд 11Catalytic antibodies
ABZYM = AntyBody enZYM
Antibodies
are
selected
to TS-like
molecule
Transition state (TS

‡)

Preferential
binding
of TS:
RIGID
enzyme

BIND ? TRANSFORM ? RELEASE

Suggested by Jencks in 1969
Done by Schultz and Lerner in 1994


Слайд 12BIND ? TRANSFORM ? RELEASE: ENZYME
Note:
small
active
site
chymotrypsin


Слайд 13Sometimes:
Different folds with the same active site:
the same biochemical function


Слайд 14POST-TRANSLATIONAL MODIFICATION

Sometimes, only the CHAIN CUT-INDUCED DEFORMATION
MAKES THE ENZYME ACTIVE

READY


Chymotripsinogen

active
cat. site

non-active “cat. site”

CUT

Chymotripsin



Слайд 15Chymotrypsin catalyses hydrolysis of a peptide




Spontaneous hydrolysis: very slow


Слайд 16SER-protease:
catalysis


Слайд 17 CHYMOTRYPSIN ACTIVE SITE with INHIBITOR


Слайд 18Preferential binding of TS: RIGID enzyme
F = k1x1

= - k2x2 Ei = (ki /2)(xi)2 = F2/(2ki )
Hooke’s & 2-nd Newton’s Energy is concentrated
laws in the softer body.
Effective catalysis: when
substrate is softer than protein

Kinetic energy cannot be stored for catalysis
Friction stops a molecule within
picoseconds:

m(dv/dt) = -(3πDη)v [Stokes law]
D – diameter; m ~ D3 – mass; η – viscosity

tkinet ≈ 10-13 sec × (D/nm)2 in water

Слайд 19PROTEIN STRUCTURE AT ACTION:

BIND ? TRANSFORM ? RELEASE

RIGID CATALITIC SITE

INDEPENDENT

ON OVERALL CHAIN FOLD


Слайд 20Induced fit
model
for enzyme catalysis.
Daniel Edward Koshland, Jr. 
(1920 – 2007)
Hermann Emil Louis


Fischer (1852 –1919)

Lock and key
model
for enzyme catalysis.


Слайд 21MOTIONS


Слайд 22Double sieve:
movement of substrate
from one active site to another

tRNAIle
Fersht A.R., Dingwall C.

(1979)

Слайд 23Movement in two-domain enzyme:
One conformation for binding (and release),
another for

catalysis

Induced fit


Слайд 24Two-domain dehydrogenases:
Universal NAD-binding domain;
Individual substrate-binding domain


Слайд 25Movement in quaternary structure:
Hemoglobin vs. myoglobin
non-covalent
bonding of O2
move of

O2 to and from Fe needs
fluctuation of a few protein’s side chains




Слайд 26Kinesin : Linear cyclic motor
the simplest one-direction

walking machine with cyclic ligand-induced conformational changes and bindings/unbindings to tubulin microtubule

Mandelkow & Mandelkow,
Trends Cell Biol. 12, 585 (2002)


The head “feels” its position, front or rear,
due to its interaction with the linker. Yildiz, Tomishige, Gennerich, Vale, Cell 134, 1030 (2008)


Слайд 27Kinesin : Linear cyclic motor
the simplest one-direction

walking machine with cyclic ligand-induced conformational changes and bindings/unbindings to tubulin microtubule

Слайд 28Sir Andrew Fielding Huxley
(1917 – 2012)
Nobel Prize 1963
Myosin "cross-bridges"


Слайд 29Механохимический цикл
Миозин

Актин

АТФ → АДФ + Ф
15 ккал/моль
в клеточных условиях


Слайд 30Mechanochemical cycle
Myosin


Actin









Слайд 31
structure from the X-ray data: Junge, Sielaff, Engelbrecht, Nature, 459, 364

(2009)

Rotary motor
F0F1-ATP synthase


Слайд 32Engelbrecht & Junge, FEBS Lett. 414, 485 (1997)
Elston, Wang, Oster, Nature,

391, 510 (1998)

F0-machine: H+-turbine

Elston, Wang, Oster, Nature, 391, 510 (1998)

Acid side

Basic side

Rotary motor
F0F1-ATP synthase


Слайд 33 Rotary motor
F0F1-ATP synthase ⎯ working cycle of the H+-turbine


Слайд 34

H3O+ binding in Bacillus pseudofirmus
Ion binding
to

the rotor ring of
F0F1-ATP synthase


H+ binding in Spirulina platensis

Rotary motor

Pogoryelov, Yildiz,
Faraldo-Gómez, Meier,
Nat. Struct. Mol. Biol.,
16, 1068 (2009)

Preiss, Yildiz, Hicks, Krulwich, Meier, PLoS Biol. 8, e1000443 (2010)


Слайд 35SUMMARY
of the course


Слайд 36
PROTEIN PHYSICS

Interactions


Structures



Selection


States & transitions



Слайд 37

Intermediates & nuclei


Structure prediction & bioinformatics


Protein engineering & design

Functioning



Слайд 38Благодарю за внимание

товарищи офизевшие биологи!


Слайд 39Благодарю за внимание

товарищи офизевшие биологи!


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика