Этапы формирования и развития представлений о клетке презентация

Содержание

Этапы формирования и развития представлений о клетке Зарождение понятий о клетке 1590г. Братья Янсены (изобретение микроскопа), 1665г. Р. Гук (ввел термин «клетка»), 1680г. А.Левенгук (открыл одноклеточные организмы), 1831г. Р.Броун (открытие ядра).

Слайд 1Строение клетки


Слайд 2Этапы формирования и развития представлений о клетке
Зарождение понятий о клетке
1590г. Братья

Янсены (изобретение микроскопа),
1665г. Р. Гук (ввел термин «клетка»),
1680г. А.Левенгук (открыл одноклеточные организмы),
1831г. Р.Броун (открытие ядра).

Слайд 3Этапы формирования и развития представлений о клетке
Возникновение клеточной теории.
1838г. Т.Шлейден (сформулировал

вывод: ткани растений состоят из клеток),
1839г. М.Шванн (ткани животных состоят из клеток. Обобщил знания о клетке, сформулировал основное положение клеточной теории: клетки представляют собой структурную и функциональную основу всех живых существ).

Слайд 4Этапы формирования и развития представлений о клетке
Развитие клеточной теории.
1858г. Р.Вирхов.(утверждал, что

каждая новая клетка происходит только от клетки в результате ее деления),
1930г. – создание электронного микроскопа.

Слайд 5Клеточная теория
клетка – основная единица строения и развития всех живых организмов;
клетки

всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности;
каждая новая клетка образуется в результате деления исходной (материнской) клетки;
в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.


Слайд 6Ткани
Практически все ткани многоклеточных организмов состоят из клеток. С

другой стороны, слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер. Сходным образом устроена и сердечная мышца животных. Ряд структур организма (раковины, жемчужины, минеральная основа костей) образованы не клетками, а продуктами их секреции.


Слайд 7Слизевики
Слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер.
Вернуться


Слайд 8Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека

включает в себя 1014 разновидностей клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.

Слайд 9Слева истреблённый несколько веков назад эпиорнис. Справа – его яйцо, найденное

на Мадагаскаре.

Вернуться


Слайд 10Клеточные структуры и их функции.
Клетка:
Ядро
Цитоплазма
Поверхностный аппарат
Особенности растительных клеток






Слайд 11Поверхностный аппарат клеток
Для того, чтобы поддерживать в себе необходимую концентрацию веществ,

клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет поверхностный аппарат клеток, который состоит из:



Слайд 12Состав и строение наружной плазматической мембраны
Двойной слой липидов,
Белки,
Углеводы.


Слайд 13В настоящее время общепринятой является жидкостно-мозаичная модель строения плазмалеммы. Основой мембраны

является липидный бислой, в котором гидрофобные хвосты фосфолипидов обращены внутрь, а гидрофильные головки – наружу.
С липидным бислоем связаны белки (до 60%) – они могут примыкать к липидному бислою, погружаться в него или пронизывать его насквозь.

Оболочка животных клеток


Слайд 14Толщина мембраны – примерно 7,5 нм. Снаружи находится гликокаликс. Углеводный компонент

мембран обычно представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды).
Молекулы белков и липидов подвижны, способны перемещаться, главным образом, в плоскости мембраны.

Оболочка животных клеток


Слайд 15Белки мембраны
Интегральные
(трансмембранные)
Наружные
(периферические)
Полуинтегральные
(рецепторные)
Проходят через всю
толщу мембраны
Создают в мембране
гидрофильные поры
(транспорт веществ)
Погружены в толщу
фосфолипидных
слоев
Выполняют
рецепторные

функции

Лежат снаружи
мембраны, примыкая
к ней
Выполняют
многообразные
функции ферментов







Белки-переносчики

Каналообразующие
белки




Слайд 16Интегральные белки пронизывают мембрану насквозь;
полуинтегральные погружены в мембрану на различную глубину;


периферические белки находятся на внешней или внутренней поверхности липидного бислоя;

Оболочка животных клеток


Слайд 17Основные функции поверхностного аппарата
Ограничение внутренней среды клетки, сохранение ее формы,
Защита от

повреждений,
Рецепторная функция;
Транспорт веществ через плазматические мембраны
(трансмембранный транспорт),
Транспорт в мембранной упаковке (эндоцитозТранспорт в мембранной упаковке (эндоцитоз и экзоцитоз ).

Вернуться


Слайд 18 Важной проблемой является транспорт веществ через плазматические мембраны. Он

необходим для доставки питательных веществ в клетку, вывода токсичных отходов, создания градиентов для поддержания нервной и мышечной активности. Существуют следующие механизмы транспорта веществ через мембрану:
диффузия
осмос
активный транспорт

Транспорт веществ через плазматические мембраны

Вернуться


Слайд 19Диффузия, осмос
диффузия обеспечивает перемещение маленьких, незаряженных молекул по градиенту концентрации между

молекулами липидов (газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану);
при облегчённой диффузии растворимое в воде вещество (глюкоза, аминокислоты, нуклеотиды) проходит через мембрану по особому каналу, создаваемому белком-переносчиком;
осмос (диффузия воды через полупроницаемые мембраны);
Процессы не требуют дополнительной энергии.

Вернуться


Слайд 20
активный транспорт - перенос молекул Na+ и K+, H+ из области

с меньшей концентрацией в область с большей (против градиента концентраций) посредством специальных транспортных белков.
Процесс требует затраты энергии АТФ


Активный транспорт



Слайд 21Натрий-калиевый насос
Обмен осуществляется при помощи специальных белков, образующих в мембране

так называемые каналы. На рисунке показана работа такого канала (насоса), обеспечивающего движение ионов натрия и калия через клеточную мембрану.



Слайд 22Натрий-калиевый насос
Внутриклеточная часть белка расщепляет молекулы АТФ.

Это обеспечивает выведение из клетки трех ионов натрия и поступление двух ионов калия. Таким образом внутри клетки поддерживается высокая концентрация калия (в 35 раз выше, чем вне клетки) и низкая концентрация натрия (в 14 раз ниже внеклеточной). Это важно для создания электрических потенциалов на мембранах, процесса возбуждения в нервных и мышечных клетках, нормального протекания других внутриклеточных процессов.

Вернуться


Слайд 23Эндоцитоз
при эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или

вакуоли.
! процесс требует дополнительной энергии

Различают фагоцитоз – поглощение твёрдых частиц (например, лейкоцитами крови) – и пиноцитоз – поглощение жидкостей;

Вернуться


Слайд 24Экзоцитоз
экзоцитоз – процесс, обратный эндоцитозу; из клеток выводятся непереварившиеся остатки твёрдых

частиц и жидкий секрет.
! процесс требует дополнительной энергии

Вернуться


Слайд 25Виды активного транспорта
Натрий-калиевый насос
Экзоцитоз
Эндоцитоз
Фагоцитоз
Пиноцитоз





Транспорт веществ через мембрану


Слайд 26Оболочка растительных клеток
Растительная клетка, как и животная, окружена цитоплазматической мембраной, поверх

которой располагается, как правило, толстая клеточная стенка, отсутствующая у животных клеток.
Основным компонентом клеточной стенки является целлюлоза (клетчатка). Молекулы целлюлозы собраны в пучки — фибриллы, образующие каркас клеточной стенки.

Слайд 27Цитоплазма
1. Основние вещество цитоплазмы – гиалоплазма (существует в 2 формах: золь

- более жидкая и
гель – более густая.
2. Органеллы – постоянные компоненты.
3. Включения –временные компоненты.
Свойство цитоплазмы – циклоз (постоянное движение)

Обязательная часть клетки,
заключенная между плазма-
тической мембраной и ядром.


Слайд 28Функции цитоплазмы
Перемещает вместе с собой различные вещества, включения и органоиды.
В

ней протекают все процессы обмена веществ
Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия.

Слайд 29Органоиды (органеллы) — постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций.

Каждый органоид имеет определенное строение и выполняет определенные функции.
В зависимости от особенностей строения, различают мембранные и немембранные органоиды.

Мембранные органоиды могут быть одномембранными и двумембранными.

Органоиды


Слайд 30Основные органеллы
Мембранные
Митохондрии
Эндоплазматическая сеть
Аппарат Гольджи
Пластиды
Лизосомы
Немембранные
Рибосомы
Вакуоли
Клеточный центр
Органеллы движения
Вернуться


Слайд 31Органоиды



Одномембранные

ЭПР
Комплекс Гольджи
Лизосомы
Вакуоли
Реснички и жгутики эукариот
Двумембранные

Митохондрии
Пластиды
Ядро
Немембранные

Рибосомы
Клеточный центр
Цитоскелет
Миофибриллы


Слайд 32Митохондрии
Состав и строение:
2 Мембраны
Наружная
Внутренняя(образует выросты – кристы)
Матрикс (внутреннее полужидкое содержимое,

включающее ДНК, РНК, белок и рибосомы)
Функции:
Синтез АТФ
Синтез собственных органических веществ,
Образование собственных рибосом.

Вернуться


Слайд 33Эндоплазматическая сеть
Строение
1 мембрана образует:
Полости
Канальцы
Трубочки
На поверхности мембран – рибосомы






Функции:
Синтез органических веществ (с

помощью рибосом)
Транспорт веществ

Вернуться



Слайд 34Аппарат Гольджи
Строение
Окруженные мембранами полости (цистерны) и связанная с ними система пузырьков.
Функции
Накопление

органических веществ
«Упаковка» органических веществ
Выведение органических веществ
Образование лизосом

Вернуться


Слайд 35Пластиды
Строение
2 мембраны
Наружная
Внутренняя (содержащие хлорофилл граны, собранные из стопки тилакоидных мембран)
Матрикс (внутренняя

полужидкая среда, содержащая белки, ДНК, РНК и рибосомы)

Лейкопласты

Хромопласты

Хлоропласты

Функции:
Синтез АТФ
Синтез углеводов
Биосинтез собственных белков

Вернуться


Слайд 36Лизосомы
Строение:
Пузырьки овальной формы (снаружи – мембрана, внутри – ферменты)

Функции:
Расщепление органических веществ,
Разрушение

отмерших органоидов клетки,
Уничтожение отработавших клеток.

Вернуться


Слайд 37Немембранные органеллы. Рибосомы
Строение:
Малая
Большая
Состав:
РНК (рибосомная)
Белки.
Функции:
Обеспечивает биосинтез белка (сборку белковой молекулы из аминокислот).


субъединицы
Вернуться


Слайд 38Клеточный центр
Строение:
2 Центриоли (расположены перпендикулярно друг другу)
Состав центриолей:
Белковые микротрубочки.
Свойства: способны к

удвоению
Функции:
Принимает участие в делении клеток животных и низших растений

Вернуться



Слайд 39Органеллы движения
Реснички (многочисленные цитоплазматические выросты на мембране).
Жгутики (единичные цитоплазматические выросты на

мембране).
Псевдоподии (амебовидные выступы цитоплазмы).
Миофибриллы (тонкие нити длиной до 1 см.).

Вернуться


Слайд 40Ядро
Ядро
имеется в
Клетках Всех
Эукариот За
Исключением
Эритроцитов
млекопитающих.

У некоторых простейших имеются два ядра,

но как правило, клетка содержит только одно ядро. Ядро обычно принимает форму шара или яйца; по размерам (10–20 мкм) оно является самой крупной из органелл.

Слайд 41Ядро
Строение:
1. Ядерная оболочка (2 мембранная):
Наружная мембрана
Внутренняя мембрана.
2. Ядерный сок (белки, ДНК,

вода, мин. соли).
3. Ядрышко (белок и р-РНК).
4. Хромосомы (хроматин):
ДНК
Белок.



Слайд 42Кариолемма
Кариоплазма
Хроматин
Ядрышки
Компоненты ядра

Двойная ядерная
мембрана
отделяет ядерное
содержимое и,
прежде всего,
хромосомы от
цитоплазмы


Ядерный сок,
содержит
различные

белки
и другие
органические и
неорганические
соединения

Деспирализо-
ванные
хромосомы



Округлые тельца,
образованные
молекулами
рРНК и белками,
место сборки
рибосом







Слайд 43Ядро
Функции:
Регуляция процесса обмена веществ,
Хранение наследственной информации и ее воспроизводство,
Синтез РНК,
Сборка рибосом

(рибосомальный белок + рибосомальная РНК)

Вернуться


Слайд 44Пероксисома
Пероксисомы (микротельца) имеют округлые очертания и окружены мембраной. Их размер не

превышает 1,5 мкм. Пероксисомы связаны с эндоплазматической сетью и содержат ряд важных ферментов, в частности, каталазу, участвующую в разложении перекиси водорода.

Пероксисома клетки листа.
В центре её кристаллическое
белковое ядро.

Вернуться


Слайд 45Цитоскелет, микрофиламенты
Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки,

образуя своеобразный цитоскелет. С опорой и движением связана и ещё одна форма органелл – микрофиламенты – тонкие белковые нити диаметром 5–7 нм.

Цитоскелет клетки. Микрофиламенты
окрашены в синий, микротрубочки –
в зеленый, промежуточные волокна –
в красный цвет.

Вернуться


Слайд 46Особенности растительных клеток
В растительных клетках присутствуют все органеллы, обнаруженные в животных

клетках (за исключением центриолей). Однако имеются в них и свойственные только для растений структуры.
Клеточные стенки растений состоят из целлюлозы, образующей микрофибриллы. В клетках древовидных растений слои целлюлозы пропитываются лигнином, придающим им дополнительную жёсткость.

Клеточные стенки служат растениям опорой, предохраняют клетки
от разрыва, определяют форму клетки, играют важную роль
в транспорте воды и питательных веществ от клетки к клетке.
Соседние клетки связаны друг с другом плазмодесмами,
проходящими через мелкие поры клеточных стенок.

Вернуться


Слайд 47Вакуоли
Вакуоль – наполненный жидкостью мембранный мешочек. В животных клетках могут наблюдаться

небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции. Растительные клетки имеют одну большую центральную вакуоль. Жидкость, заполняющая её, называется клеточным соком. Это концентрированный раствор сахаров, минеральных солей, органических кислот, пигментов и других веществ. Вакуоли накапливают воду, могут содержать красящие пигменты, защитные вещества (например, таннины), гидролитические ферменты, вызывающие автолиз клетки, отходы жизнедеятельности, запасные питательные вещества.

Вернуться


Обратная связь

Если не удалось найти и скачать презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое ThePresentation.ru?

Это сайт презентаций, докладов, проектов, шаблонов в формате PowerPoint. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами с другими пользователями.


Для правообладателей

Яндекс.Метрика